Palm Oil

TEEB FOR AGRICULTURE AND FOOD
Overview

- Palm oil consumption set to double in 40-years

- Aim
 - Support the development of natural and social capital accounting.
 - Showing how businesses can identify more sustainable practices that yield financial and societal returns

- Materiality Assessment
 - Palm oil production in the top 11 countries analysed

- Indonesia Case Study
 - Land conversion
 - Fertiliser application
 - Methane capture from palm oil mill effluent (POME) ponds
 - Wage, salary, occupational health, and safety practices

Palm Oil
Countries in this study are responsible for 96% of global palm oil production

- Africa
 Cote d'Ivoire and Nigeria

- Asia
 China, Indonesia, Malaysia, and Thailand

- Oceania
 Papua New Guinea

- South America
 Brazil, Colombia, Guatemala, and Honduras

Biophysical data: 2011
Valuation year: 2014
Framework

1. Understand drivers of change
 - Devise KPIs that measure impact or dependency

2. Understand the consequence
 - Identify the endpoint (primary receptor) of the impact or dependency

3. Quantify in biophysical terms
 - Changes in life expectancy, quality of life, ecosystem service provision

4. Quantify in monetary terms
 - Valuation is always human-centric and reflect the value to the endpoint
Palm Oil

Indonesia and Malaysia are responsible for 49% and 35% of global palm oil production.

Three cultivation systems
- Smallholders; Estate plantations and; Large agribusinesses

Life cycle stages included
- Planting and growing
- Milling
- Refining (palm oil and palm oil kernels)

Materiality Assessment

- Biophysical Quantification
 - Input-output modelling
 - Secondary life-cycle assessment (LCA) data – Agri-Footprint
 - Agri-footprint was externally reviewed
 - The data corresponds to a typical farm and milling operation in Indonesia and Malaysia

- Planting and growing
 - Inputs: Fertilizers, fuel, land, pesticides, and water

- Milling
 - Inputs: Electricity, fuel, transportation, and water

- Refining - Crude palm oil & palm kernels
 - Inputs: Electricity, fuel, other raw materials, transportation, and water
Materiality Assessment - Processes
Materiality Assessment - Practices

<table>
<thead>
<tr>
<th>Practice or input</th>
<th>Measured output</th>
<th>Operational</th>
<th>Supply chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land use change</td>
<td>Loss in carbon stored (above-ground and soil)</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>Fertilizer application</td>
<td>Air, land and water pollution from application</td>
<td></td>
<td>Air, land and water pollution from manufacture</td>
</tr>
<tr>
<td>Pesticide application</td>
<td>Land pollution from application</td>
<td></td>
<td>Air, land and water pollution from manufacture</td>
</tr>
<tr>
<td>Water use</td>
<td>Water use</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>Use of other inputs: energy, raw materials and transportation</td>
<td>Air, land and water pollution from use</td>
<td></td>
<td>Air, land and water pollution from manufacture</td>
</tr>
<tr>
<td>POME management</td>
<td>Methane (greenhouse gas) emissions</td>
<td></td>
<td>n/a</td>
</tr>
</tbody>
</table>
Palm Oil

Indonesia and Malaysia are responsible for 49% and 35% of global palm oil production

Three cultivation systems
- Smallholders; Estate plantations and; Large agribusinesses

Life cycle stages included
- Planting and growing
- Milling
- Refining (palm oil and palm oil kernels)

Natural capital costs
- Air, land, and water pollutants
- Greenhouse gas emissions
- Waste production
- Water consumption

Materiality Assessment

- Monetary Valuation
 - Impact on human health and ecosystems
 - Air, land, and water pollutants
 - GHG emissions
 - Waste production
 - Water consumption

- Limitations
 - Natural capital costs excluded:
 - Impact resulting loss of biodiversity
 - Displacement of local communities
 - Partially excluded:
 - Air pollution from biomass burning – not all health impacts included
 - Natural capital dependencies excluded:
 - Ecosystem services
Palm oil

Palm oil production has a total cost of $38.5bn and palm kernel oil $5bn

Main drivers of valuation results:
- Yield (tonnes of FFB per ha) and conversion rate (tonnes of FFB per tonne of finished product)
- Quantity and type of inputs
- Monetary valuation per unit quantity of emissions

Materiality Assessment [results]

- Indonesia and Malaysia contribute **66% and 26%** to the total impact of palm oil production

- On average, producing one tonne of palm oil and palm kernel oil has a natural capital cost of $813 and $924 respectively

- Producing palm oil in **Nigeria** has the highest cost per tonne, due to lower yield per ha and conversion rate

- **Cote d’Ivoire** has the lowest cost per tonne due to lower social and natural capital costs of emissions associated with fertiliser application and pesticide application
Materiality Assessment

[results]

<table>
<thead>
<tr>
<th>Country</th>
<th>Other raw materials, milling and refining</th>
<th>Emissions from POME</th>
<th>Other raw materials, planting phase</th>
<th>Pesticide manufacturing</th>
<th>Pesticide application</th>
<th>Fertiliser manufacturing</th>
<th>Fertiliser application</th>
<th>Land use change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nigeria</td>
<td>4</td>
<td>170</td>
<td>30</td>
<td>4</td>
<td>13</td>
<td>22</td>
<td>533</td>
<td>560</td>
</tr>
<tr>
<td>Indonesia</td>
<td>3</td>
<td>90</td>
<td>13</td>
<td>2</td>
<td>30</td>
<td>13</td>
<td>206</td>
<td>735</td>
</tr>
<tr>
<td>Honduras</td>
<td>2</td>
<td>99</td>
<td>15</td>
<td>2</td>
<td>24</td>
<td>11</td>
<td>259</td>
<td>186</td>
</tr>
<tr>
<td>Malaysia</td>
<td>3</td>
<td>99</td>
<td>10</td>
<td>1</td>
<td>26</td>
<td>13</td>
<td>136</td>
<td>241</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>2</td>
<td>71</td>
<td>10</td>
<td>1</td>
<td>38</td>
<td>6</td>
<td>151</td>
<td>246</td>
</tr>
<tr>
<td>Thailand</td>
<td>3</td>
<td>129</td>
<td>16</td>
<td>1</td>
<td>39</td>
<td>15</td>
<td>315</td>
<td>70</td>
</tr>
<tr>
<td>Guatemala</td>
<td>3</td>
<td>100</td>
<td>17</td>
<td>2</td>
<td>25</td>
<td>12</td>
<td>190</td>
<td>14</td>
</tr>
<tr>
<td>Brazil</td>
<td>2</td>
<td>95</td>
<td>17</td>
<td>2</td>
<td>26</td>
<td>12</td>
<td>214</td>
<td>13</td>
</tr>
<tr>
<td>Colombia</td>
<td>2</td>
<td>113</td>
<td>17</td>
<td>2</td>
<td>25</td>
<td>12</td>
<td>197</td>
<td>4</td>
</tr>
<tr>
<td>China</td>
<td>2</td>
<td>58</td>
<td>10</td>
<td>2</td>
<td>8</td>
<td>16</td>
<td>263</td>
<td>8</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>2</td>
<td>87</td>
<td>13</td>
<td>1</td>
<td>14</td>
<td>8</td>
<td>137</td>
<td>4</td>
</tr>
</tbody>
</table>
Indonesia Case Study
Palm Oil

Production in Indonesia causes $25bn worth of damages annually, and over $1,000 per tonne of palm oil.

Significant natural and social capital costs in Indonesia:
- Land conversion
- Fertilizer application
- POME management
- Social impact

Indonesia Case Study

- 7 scenarios

Biophysical Quantification

- Change in above and belowground carbon stock
 - Primary data used where possible from RSPO and FAO, IPCC, EC, Blonk Consultants
 - Same method as in the Materiality Assessment

Air pollution from biomass and peatland burning

- 24 air pollutants taken into account

Monetary Valuation

- GHG cost of $126
- Indonesia specific air pollutant costs
- Financial costs of fire and mechanical clearing
 - Includes labour and input costs
Indonesia Case Study

Land Conversion Scenarios

<table>
<thead>
<tr>
<th></th>
<th>Prevailing ecosystem</th>
<th>Soil type</th>
<th>Land conversion method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary forest</td>
<td>Peat soil</td>
<td>Mechanical clearing</td>
</tr>
<tr>
<td>2</td>
<td>Primary forest</td>
<td>Mineral soil</td>
<td>Mechanical clearing</td>
</tr>
<tr>
<td>3</td>
<td>Grassland</td>
<td>Mineral soil</td>
<td>Mechanical clearing</td>
</tr>
<tr>
<td>4</td>
<td>Disturbed forest</td>
<td>Mineral soil</td>
<td>Mechanical clearing</td>
</tr>
<tr>
<td>5</td>
<td>Primary forest</td>
<td>Peat soil</td>
<td>Use of fire</td>
</tr>
<tr>
<td>6</td>
<td>Primary forest</td>
<td>Mineral soil</td>
<td>Use of fire</td>
</tr>
<tr>
<td>7</td>
<td>Disturbed forest</td>
<td>Mineral soil</td>
<td>Use of fire</td>
</tr>
</tbody>
</table>
Palm Oil

Production in Indonesia causes $25bn worth of damages annually, and over $1,000 per tonne of palm oil.

Significant natural and social capital costs in Indonesia:
- Land conversion
- Fertilizer application
- POME management
- Social impact

Indonesia Case Study

- Limitations and Assumptions
 - Assumptions on the amount of carbon held in primary ecosystems can influence results significantly
 - Mechanical land clearing
 - Linear decay of forest matter
 - Use of fire in land clearing
 - 50% of forest biomass is burnt; 50% decays linearly over 25 years
 - 7% of land is burnt – approximately 3 tonnes of soil per hectare
Over 25 years, converting primary forest on:
- Peat soil emits the most carbon per ha, or 429 tonnes of carbon per ha
- Mineral soil leads to emissions of 82 tonnes of carbon per ha

Converting disturbed forest and grassland on mineral soil leads to a **positive change** in carbon stocks, meaning that oil palm plantation sequesters more carbon than the net loss due to land use change.

Headline results (no discounting vs. discounted)

1. Converting primary forest on peat soil using burning techniques
 - $314,000 per ha or $270,000 per ha

2. Converting primary forest on peat soil using mechanical clearing
 - $198,000 per ha or $146,000 per ha
Indonesia Case Study
[land conversion]
Palm Oil

Production in Indonesia causes $25bn worth of damages annually, and over $1,000 per tonne of palm oil

Significant natural and social capital costs in Indonesia:
- Land conversion
- Fertilizer application
- POME management
- Social impact

Indonesia Case Study

- 3 scenarios
- Biophysical Quantification
 - Calculated nitrogen and phosphorus balance over 25 years
 - Yield maintained in all scenarios
- Monetary Valuation
 - The same coefficients are applied as in the Materiality Assessment
 - Average fertilizer cost per type of fertilizer is derived from the UN Comtrade database (Indonesia-specific 2013)
 - $1,453 to $2,107 per hectare per year
- Limitations and Assumptions
 - Full effect of soil erosion on not taken into account
 - Assumptions in USLE calculation
 - Cost of improved management practice, such as fertigation, require a large initial investment
Indonesia Case Study

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Optimisation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>EFB, POME, crop cover, use of pruned fronds, chemical fertilizers No - Surplus of nutrients</td>
</tr>
<tr>
<td>1</td>
<td>EFB, POME, crop cover, use of pruned fronds, chemical fertilizers Yes - Quantity of each input adjusted to provide the adequate quantity of nutrients</td>
</tr>
<tr>
<td>2</td>
<td>Chemical fertilizer only Yes - Quantity adjusted to provide adequate quantity of nutrient</td>
</tr>
</tbody>
</table>
Indonesia Case Study

[fertilizer use]
Palm Oil
Production in Indonesia causes $25bn worth of damages annually, and over $1,000 per tonne of palm oil

Significant natural and social capital costs in Indonesia:
- Land conversion
- Fertilizer application
- POME management
- Social impact

Indonesia Case Study

2 scenarios

Biophysical Quantification
- Literature review of methane capture and conversion rates (UNFCCC CDM)
- Use of energy
- Treatment of wastewater
- Fugitive emissions and flaring

Monetary Valuation
- GHG cost $126 per tonne
- Marginal capital and operating expenditure costs

Limitations and Assumptions
- Limited range of studies providing an evidence base
- CAPEX costs means the scenario is only applicable to large businesses
Indonesia Case Study

[POME]

- The social and natural capital cost of POME with and without methane capture is $29 and $409 per ha per year respectively.
Palm Oil

Production in Indonesia causes $25bn worth of damages annually, and over $1,000 per tonne of palm oil

Significant natural and social capital costs in Indonesia:
- Land conversion
- Fertilizer application
- POME management
- Social impact

Indonesia Case Study

- Income and Occupational Health & Safety
- Quantification
 - National and regional data (research studies, certification reports...)
 - Financial and in-kind wage data, labour productivity and occupational accident rates based on larger palm oil estates in Riau, North Sumatra and Kalimantan
- Monetary Valuation
 - Income
 - Living wage gap: difference between living wage and average wage of underpaid workers
 - In-kind wage (financial value of in-kind benefits) taken into account
 - Occupational health & safety
 - Disability Adjusted Life Years (DALY) approach
 - Cost of PPE to prevent impacts
 - Social return on investment (SROI) of possible interventions calculated based on cash flow analysis of average plantation
- Limitations and Assumptions
 - Lack of quantitative research on social issues in general (land use rights) and relation between better working conditions and profit/productivity/incident rates
 - Uncertainty on value of DALY
The social cost of underpayment of hired workers equals $390 per FTE whereas the social cost of health impacts, caused by occupational incidents, is valued at $185 per FTE.

Social return on investment (SROI) for:
- Paying living wages = 89%
- Increasing use of PPE = 83%
Questions...