TEEB Rice

Anne Bogdanski & Barbara Gemmill-Herren, FAO

TEEB AgFood Expert Workshop, 8.9.2015 Brussels

Project Consortium

FAO

- Barbara Gemmill-Herren
- Renee Van Dis
- Anne Bogdanski

Trucost

- Chris Baldock
- Rick Lord

IRRI

Finbarr Horgan

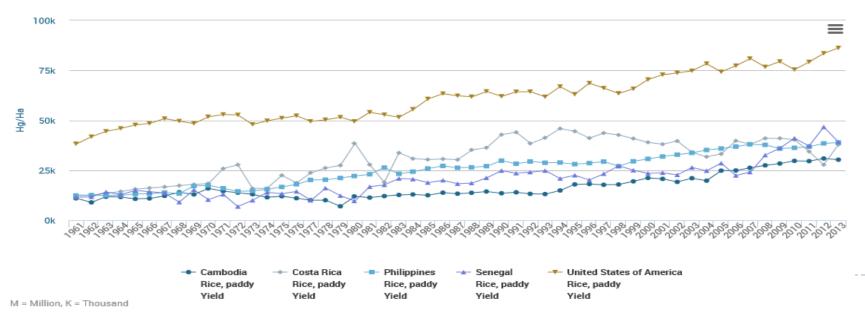
Bioversity

- Fabrice de Clerk
- Simon Attwood
- Marie Soleil

1. Introduction

- Central to the food security of half the world
- 144 million farms grow rice, the majority smaller than one hectare
- More than 90% of rice production and consumption is in Asia
- Several positive and negative externalities linked to rice production.

- 2. Study objectives
- 1. To identify visible and <u>invisible</u> costs and benefits of rice agro-ecosystems; i.e. externalities
 - Which ecosystem services are linked to rice production?
 - Which types of environmental impacts does rice production have?
- 2. To identify and assess those rice management practises and systems which reduce trade-offs and increase synergies
 - How do costs and benefits change with different management approaches?


3. To make these trade-offs and synergies visible

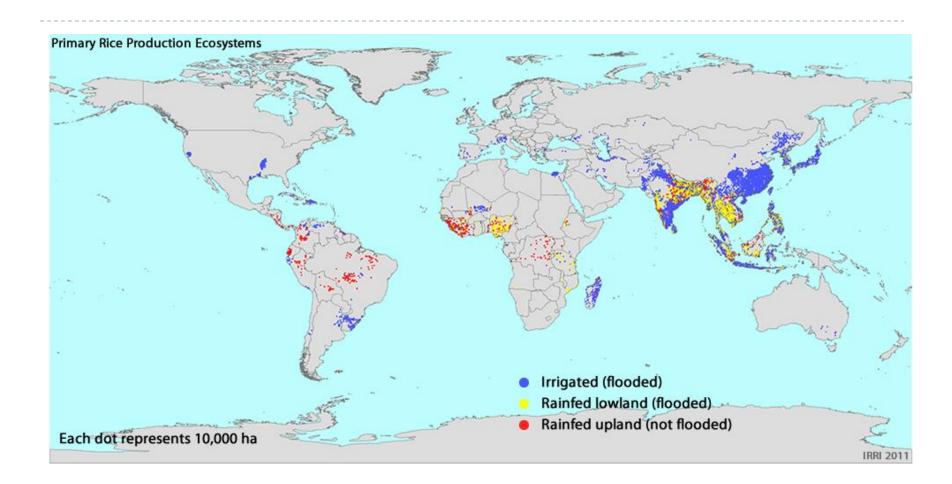
Assign biophysical or monetary values to the different options

3. Scope and framework

I. Selection of case study countries

- Global coverage
 - Philippines, Cambodia, Senegal, Costa Rica and California/USA
- From low intensified to high intensified production
 - 3.3 tons/ha in Cambodia (2013)
 - 9.5 tons/ha in California/USA (2013)

3. Scope and framework


II. Develop typology/structure of rice agriculture

I. Level

- Rice production systems/Rice growing environments
 - Irrigated Lowlands
 - Rainfed Lowlands
 - Rainfed Uplands

2. Level

- Rice management systems and practices
 - > 25 different system and practice category comparisons:
 - □ Business as usual alternative management practice
 - $\hfill\square$ From land preparation to harvest

Management practices and systems

Management praction					
1. Preplanting	Land preparation	Dry tillage – puddling			
		Land levelling – no levelling			
		Minimum soil disturbance – conventional tillage			
		No tillage – conventional tillage			
2. Growth Planting		Direct seeding – transplanting			
		Dry seeding – wet seeding			
	Water management	Low irrigation frequency - high irrigation frequency			
		Improved water management - continuous flooding			
	Soil fertility management	Reduced mineral fertilizer use - high fertilizer application			
		No fertilizer use - high fertilizer application			
		Organic fertilizer application - mineral fertilizer application			
		Organic fertilizer application - no fertilizer application			
		Mineral + organic fertilizer application – mineral fertilizer application only			
	Weed management	No weed control - herbicide use			
		Biological weed control + hand weeding - herbicide use			
		Hand weeding – herbicide use			
		Reduced herbicide use – higher herbicide input			
	Pest and disease management	Non-chemical pest and disease control - pesticide use			
		Reduced pesticide use – higher pesticide input			
3. Postproduction	Residue management	Winter flooding – no winter flooding			
		Straw incorporation – straw burning			
		Straw baling and removal – straw burning			
		Straw rolling – straw burning			
Management system	IS				
		SRI – Conventional agriculture			
		Organic agriculture - Conventional agriculture			

3. Scope and framework

III. Identification of relevant policy/management issues

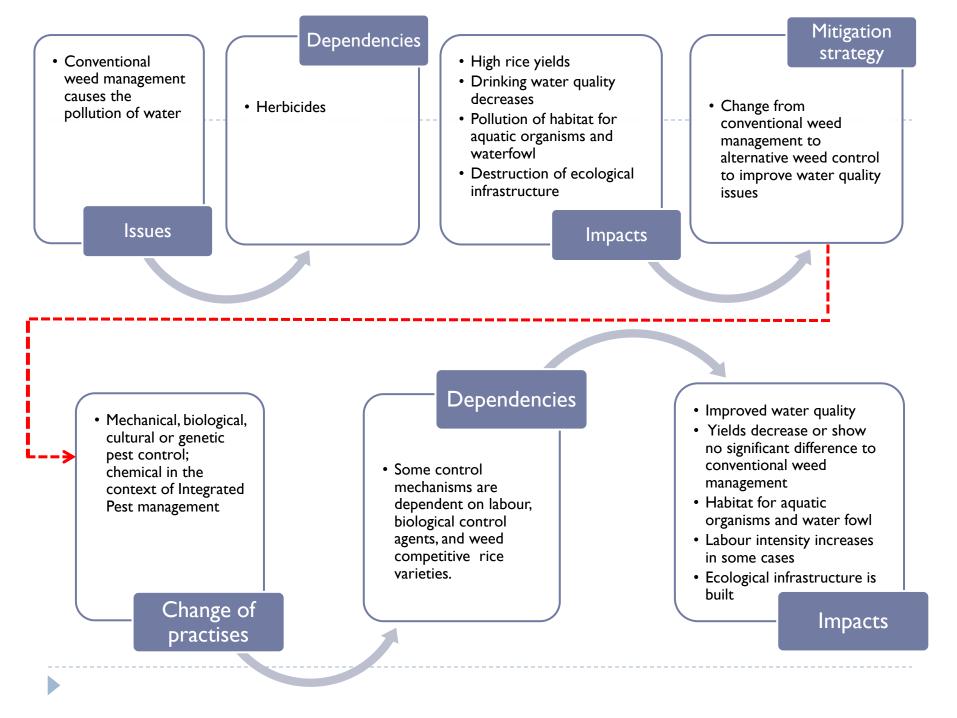
- 1. Increase rice yields
- 2. Maintain water quality
- 3. Reduce water use
- 4. Assure groundwater recharge
- 5. Eliminate the burning of rice residues and thereby maintain air quality
- 6. Use rice residues as source for energy production
- 7. Reduce greenhouse gas emissions
- 8. Provide habitat for aquatic species to increase food provision and dietary diversity, ecosystem functioning and space for recreational activities
- 9. Maintain the regulation of nutrient cycling and soil fertility
- 10. Maintain an ecological balance which prevents pest outbreaks

3. Scope and framework

IV. Identification of benefits...

	Dependency	Impact	Visible benefits	Invisible benefits	For whom? (Farmer F, Rural Community RC, Global community GC)	Primary data		Monetary Valuation
Rice grain		x	x		F, RC, GC	x		x
Dietary diversity		x		x	F, RC			
Rice straw		x	(x)	x	F		x	x
Rice husk		x	(x)	x	F		x	x
Biological control	x	x		x	F, RC, GC	(x)		(x)
Ecological resilience (pests)	×	x		×	F, RC; GC	(x)		
Nutrient cycling and soil fertility	×	x		x	F	x		
Carbon storage	x	x		x	F, GC			
Flood control	x	x		x	F, RC			
Groundwater recharge		x		x	F, RC		(x)	(x)
Habitat provisioning	x			x	F, RC	x		
Cultural services		x	x	x	F, RC, GC	(x)		

Externalities


....and costs

	Dependency	Impact	Visible cost	s I	nvisible costs	For whom? (Farmer F, Rural Community RC, Global community GC)	Primary data	Modelled data	Monetary valuation
Water pollution (Pesticide and herbicide run-off)		x		,	ĸ	F, RC	x		x
Water pollution (Eutrophication)		x		>	ĸ	F, RC		х	x
Air pollution (fertilizer)		x		,	ĸ	F, RC		x	x
Air pollution (straw burning)		x		>	ĸ	F, RC		x	x
Air pollution (combustion for energy)		x		,	ĸ	F, RC		x	x
Water consumption	x			>	ĸ	F, RC	x		x
GHG emissions		х		>	ĸ	F, GC	x	(x)	х
Soil fertility loss		x		>	ĸ	F		(x)	(x)
Wages	x		x			F	(x)		(x)
Fertilizer	x		x			F	x		x
Pesticides	x		x			F	x		x
Fuel	x		x			F			
Capital costs (e.g. machinery)	x		x			F			
Seeds	x		x			F	(x)		
Irrigation water	x		x	,	ĸ	F			
				E	xternalities		!		

4. Biophysical quantification

I. Development of narrative report

- Review of both peer reviewed and grey literature to identify management objectives/trade-offs related to rice farming in each country
- Identification of management practices and systems related to these trade-offs
- Development of assumptions/hypotheses how a change in management practice affects different agronomic and environmental variables, incl. ecosystem services

4. Biophysical quantification

II. Data extraction

- Selection of appropriate response variables and indicators
- Development of standardized template to extract data from peer reviewed journal papers
- Data extraction
 - I 500 papers have been screened
 - > 200 have been included in the narrative report
 - Data from 100 papers has been extracted for the biophysical quantification and monetary valuation
 - 7 response variables and 43 different indicators
 - In total, 1500 data points from 5 case study countries

Examples of response variables & indicators

Response variables	Indicators				
Freshwater saving	a. <u>Water use:</u> Decrease of freshwater saving				
	b. <u>Water productivity:</u> Water saving increased, as for the same amount of yield of				
	lower water productivity, water use is reduced				
	c. <u>Water holding capacity</u> : Increase in water saving, as a higher amount of water				
	remains in the soil instead of seepage or run-off				
Mitigation of greenhouse	a. <u>Cumulative CH4 emission flux</u> : Decrease in mitigation of GHG emissions				
gas emission	b. <u>Cumulative N2O emission flux</u> : Decrease in mitigation of GHG emissions				
	c. <u>Global warming potential</u> : Decrease in mitigation of GHG emissions				
	d. <u>Methyl bromide:</u> Decrease in mitigation of GHG emissions				
	e. <u>Methyl chloride:</u> Decrease in mitigation of GHG emissions				
	f. <u>Methyl Iodide:</u> Decrease in mitigation of GHG emissions				
Habitat provisioning	a. <u>Number of waterbird species:</u> Increase in habitat provisioning				
	b. <u>Waterbird abundance:</u> Increase in habitat provisioning				

4. Biophysical quantification

III.Vote-counting analysis

- To synthesize the results from all five case study countries: what are the effects of agricultural management practices and systems on different environmental, agronomic and ecosystem variables?
- Setting of standardized rules for vote-counting analysis
- > 25 practice and system comparison categories

5. Monetary valuation

I. Biophysical Modelling

Nutrient and water balance

- Precipitation during growing period
- Irrigation water used

Greenhouse gas emissions from:

- Methane from rice
- Volatilization from fertilizer

N, P, K content of:

- Synthetic and organic fertilizers
- Rice
- Rice straw and husks
- Rainwater

5. Monetary valuation

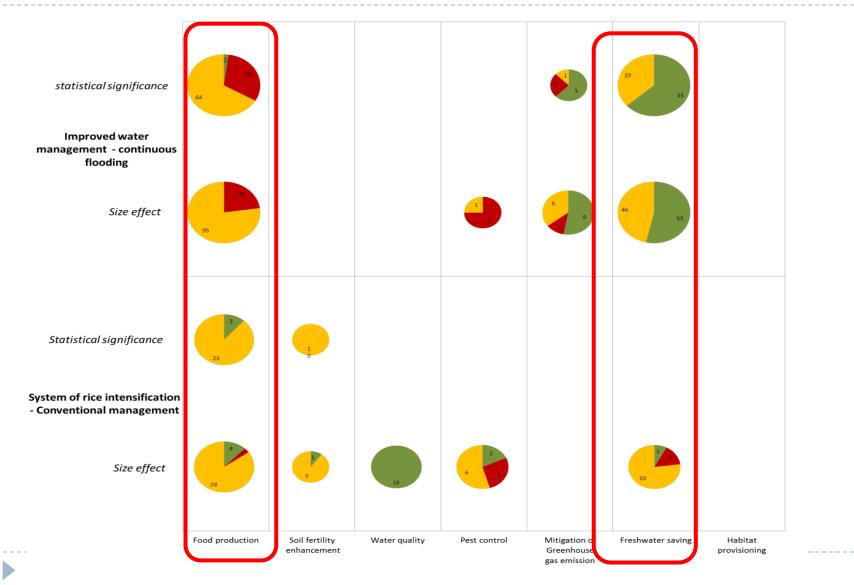
II. Valuation methodology

Applied in rice, animal husbandry and palm oil projects

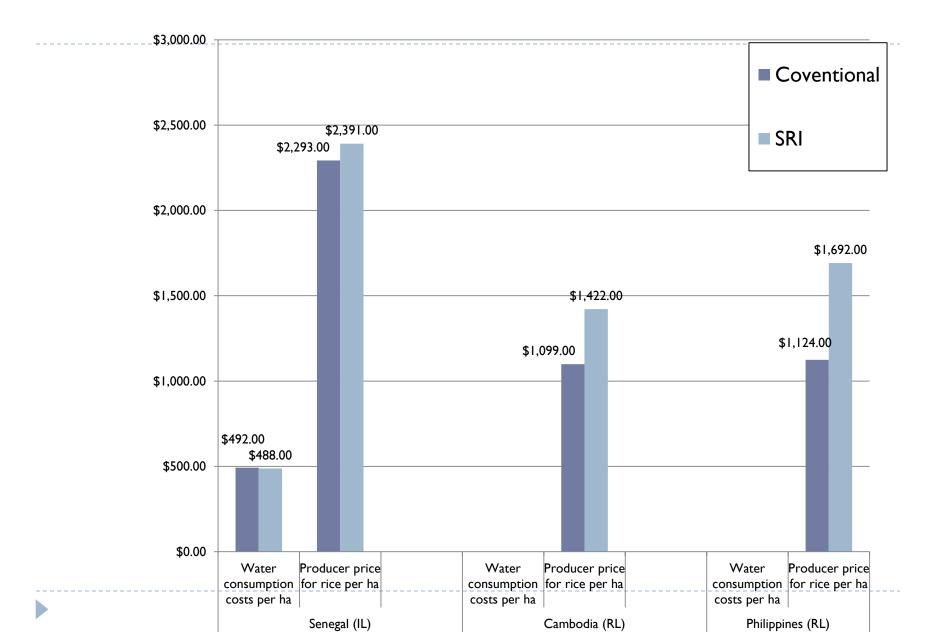
Human health impact

- Quantification unit: Disability adjusted life years (DALYs) lost
- Monetary valuation: Value of a life year (VOLY)

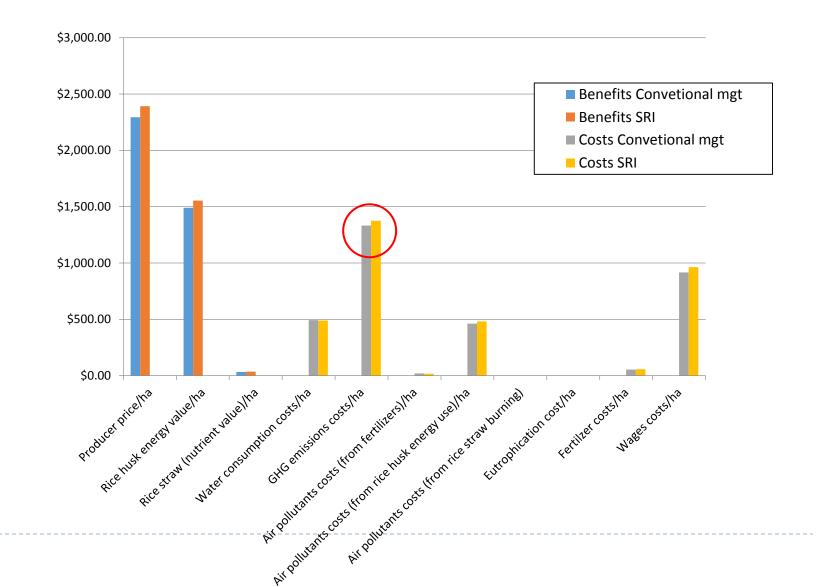
Ecosystem impact


- Quantification unit: Potentially disappeared fraction (PDF) of species
- Monetary valuation: Value of ecosystem services lost due to the disappearance of species

6. Results (Example 1)

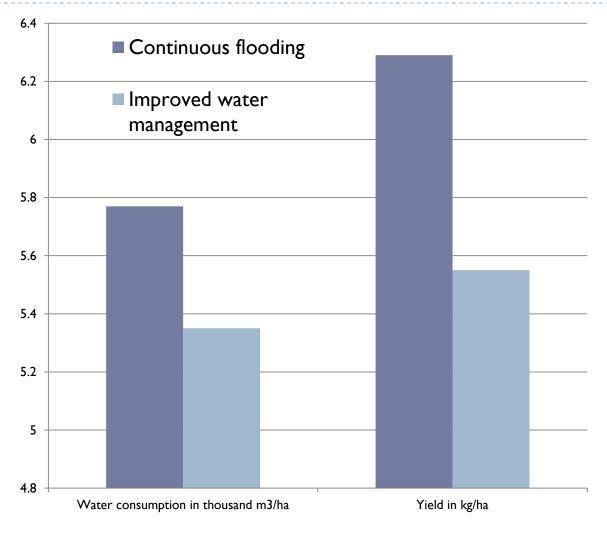

► INCREASE IN RICE YIELDS VERSUS REDUCTION OF WATER USE

- Worldwide, 80 million hectares of irrigated lowland rice provide 75% of the world's rice production.
- > 40% of the world's total irrigation water
- > 30% of the world's developed freshwater resources.
- Water sources increasingly depleted due to competing water uses from the residential and industrial sector
- Rainfall is becoming more and more erratic due to climate change and variability.


Vote-counting analysis

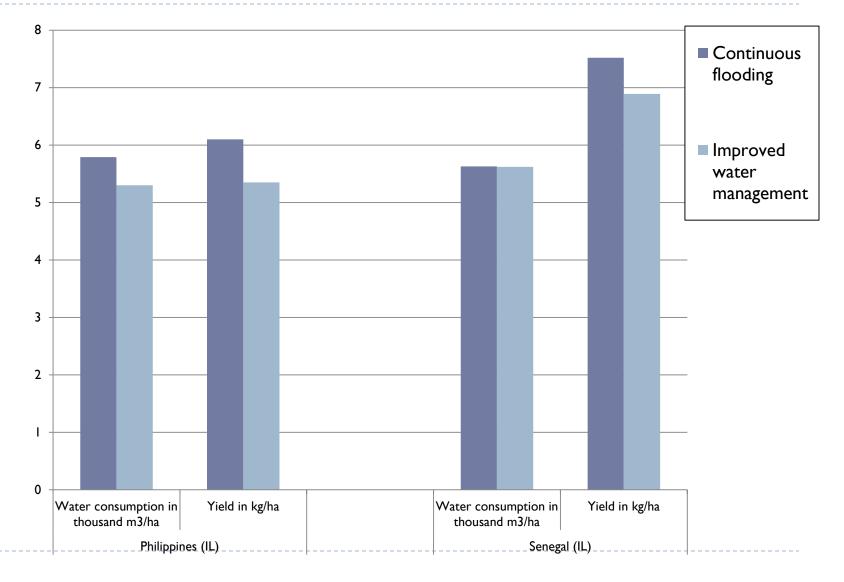
Water consumption vs yields – Valuation (SRI and conventional mgt: Senegal; Philippines and Cambodia)

Costs and benefits for selected variables in Senegal for Conventional mgt. and SRI

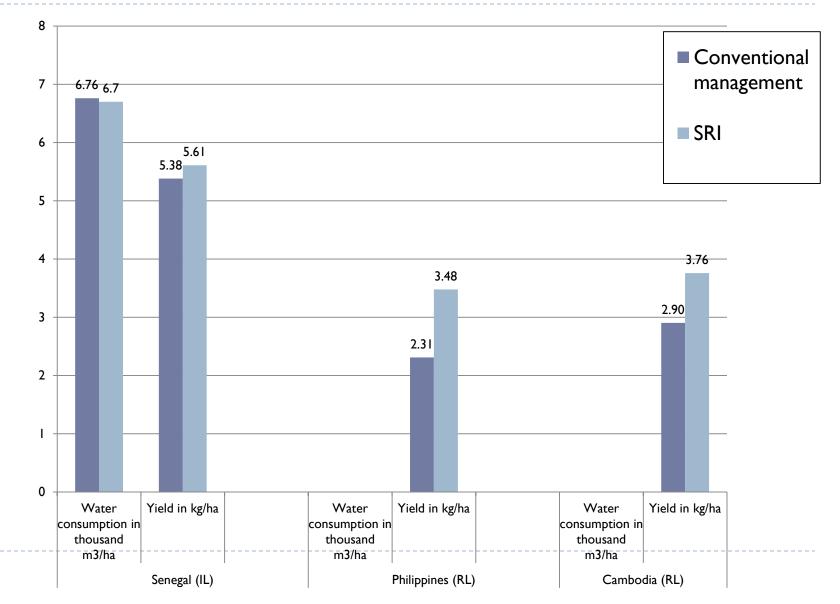

7. Conclusions with regards to this trade-off analysis

Strength	Weakness
 Robust trade-off analysis due to use of primary research data Shows opportunities and alternatives to current management practices instead of just pointing to costs of production 	 Not possible to mix with global assumptions where data is missing Based mostly on practice comparisons not on entire systems
Opportunities	Threats
 Solid basis for policy advise (change from practice A to practice B will decrease costs by) Gives the opportunity to valuate regulating ecosystem services as a positive externality – not just an avoided cost 	 Lengthy and work intensive approach Large data gaps

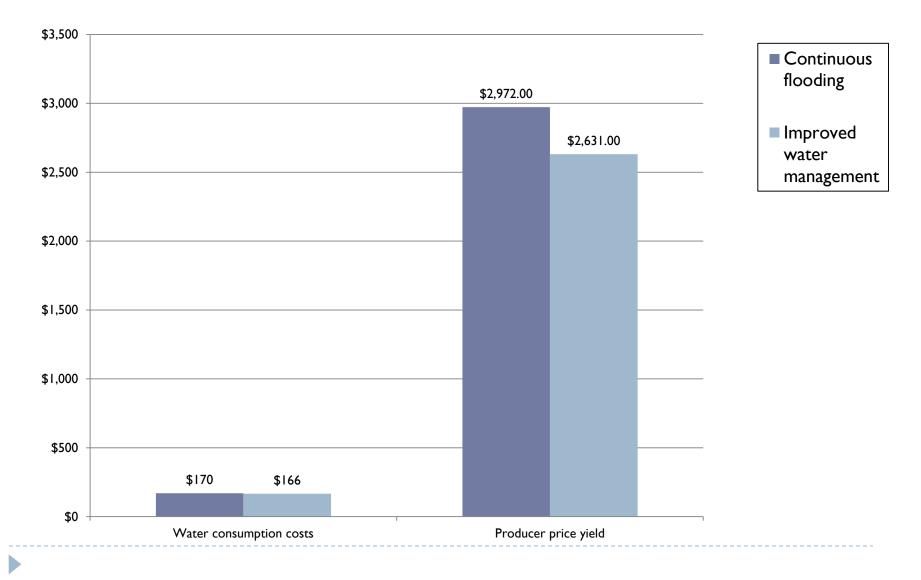
Thank you for your attention!



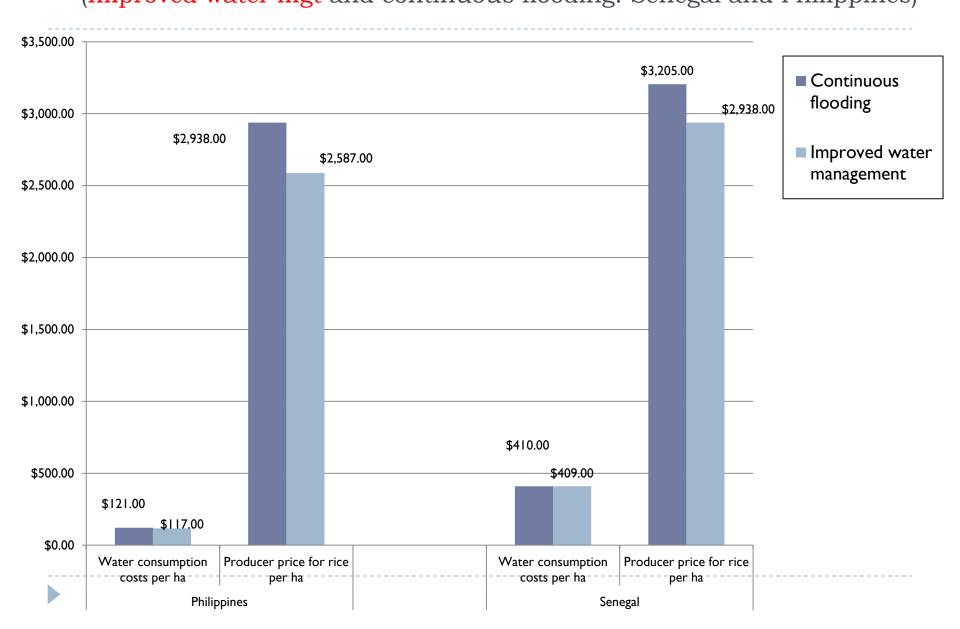
For more information, please contact: <u>anne.bogdanski@fao.org</u> Water consumption vs yields - Quantification (Improved water mgt and continuous flooding – average)


Water consumption vs yields - Quantification

(Improved water mgt and continuous flooding: Senegal and Philippines)


Water consumption vs yields - Quantification

(SRI and conventional mgt: Senegal; Philippines and Cambodia)



Water consumption vs yields - Valuation

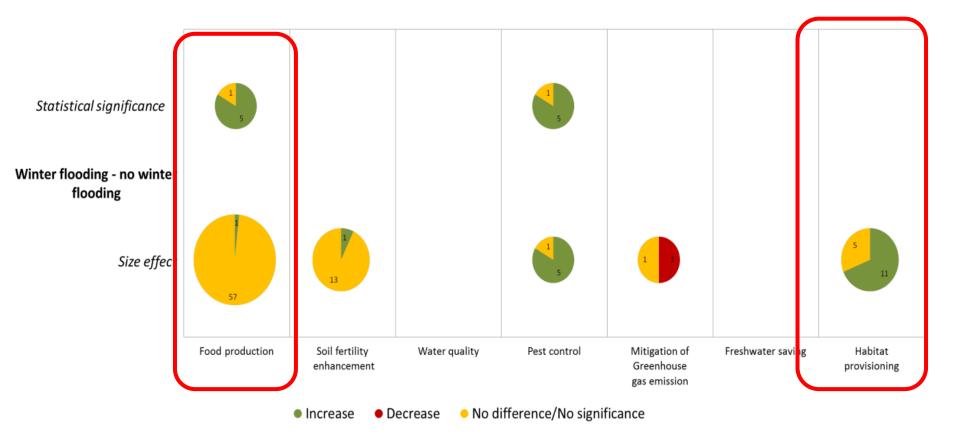
(Improved water mgt and continuous flooding – average)

Water consumption vs yields – Valuation (Improved water mgt and continuous flooding: Senegal and Philippines)

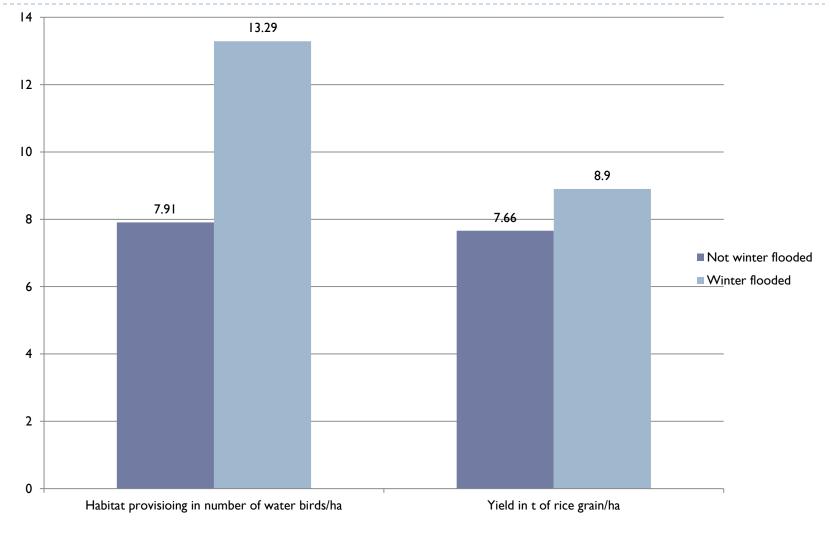
6. Results (Example 2)

► INCREASE IN RICE YIELDS VERSUS HABITAT PROVISIONING

Rice paddies are artificial wetlands that provide habitat for a wide range of organisms such as aquatic plants, fish including crabs, prawns, turtles, and mollusks and water fowl.


Picture credits: Muthmainnah

Rice yields versus habitat provisioning


- A study in 1979 recorded 589 total species of organisms in a rice field in Thailand, of which 18 were species of fish and 10 were species of reptiles and amphibians (Halwart & Gupta, 2004).
- Several benefits related to habitat provisioning
 - Food provisioning and nutrition: Fish are a primary source of protein and micronutrients for rural communities
 - Cultural services such as recreation, fishing, bird watching and hunting
 - Many regulating services such as pest control, nutrient cycling

Vote counting analysis – Rice yields versus habitat provisioning in California

Quantification of habitat provisioning and yields for winter flooding and no winter flooding in California

