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Abstract 

We study the income-supporting role of biodiversity in the context of weather shocks. We use 

micro panel data covering 20 different tropical countries combined with gridded weather and 

biodiversity data. We find that weather shocks reduce crop and total income but have ambiguous 

effects on incomes derived from natural resources. We also find that biodiversity reduces the 

impact of weather shocks on both sources of income and on total income. In developing 

countries, biodiversity conservation can therefore reduce the vulnerability of poor rural 

households to increased weather extremes. 

Introduction 

A large body of literature in ecology stresses the fundamental role of biodiversity2 for the 

productivity and stability of natural systems. Biodiversity supports biomass production and it 

reduces biomass fluctuations (Hooper et al., 2005; Tilman et al., 2006; Isbell et al., 2015). 

Biodiversity also supports the production of goods and services that are crucial for welfare 

                                                        
* Contact author. Email: fnoack@ucsb.edu 
1 We are grateful for the helpful comments of Christopher Costello, Abigail Dan, Olivier Deschenes, Ashley Larsen, 
Andrew Plantinga and the Costello lab. We further like to thank Holger Kreft and Walter Jetz for the access to the 
biodiversity data and CIFOR and especially Sven Wunder and Arild Angelsen for the access to the Poverty and 
Environment Network data. We are especially thankful for Simen Gaure for implementing the nonlinear one sided 
test in the R package lfe (Gaure, 2013a & 2013b). Frederik Noack further acknowledges the research scholarship 
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2 We use the term biodiversity to describe the total number and relative abundance of species within an ecosystem or 
a spatial unit (see e.g. Magurran (2013)). In the empirical section we use to term biodiversity to describe the total 
number of plant species of natural ecosystems within a 1° grid cell (~12,100 km2). A number of reviews of the 
economics of biodiversity are available see for instance: Kontoleon et al., 2007; Di Falco, 2012 and Polasky 2002.  
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(Pearce and Moran, 1994). Despite strong evidence of the importance of biodiversity for 

ecosystem services in agricultural systems such as pollinator and natural enemy abundances 

(Chaplin-Kramer et al. 2011), the relationship between biodiversity and income is still largely 

unexplored. This paper uses a hedonic approach to investigate the impact of biodiversity on rural 

incomes in the developing world.3 Understanding the role of biodiversity for ecosystem 

resilience is particularly important for the rural poor in developing countries, as they face 

imperfect insurance and credit markets to smooth consumption (Banerjee & Duflo, 2010; Karlan 

& Morduch, 2010) and are heavily dependent on ecosystem services (Angelsen et al., 2014). 

Our analysis is guided by a simple model in which a household allocates labor to different 

sectors in order to maximize total income. Sectors differ with respect to their vulnerability to 

weather shocks and to the influence of biodiversity. Sector incomes are thus affected by weather 

shocks, biodiversity and labor allocation. The model predicts that (1) biodiversity reduces the 

impact of weather shocks on total income and that (2) its effect on sector incomes is ambiguous. 

The reason for the latter result is that labor re-allocation, once a shock has materialized, 

amplifies the production losses in sectors with larger labor productivity declines and dampens 

the shock in sectors with lower labor productivity impacts. For total income, the effects of factor 

reallocation cancel out which explains the first theoretical result. 

To study the impact of biodiversity on the income of poor rural households in the tropics 

empirically, we construct a panel of sector-level income data from 8000 rural households in 20 

tropical countries (Angelsen et al. 2014), gridded climate data (Harris et al., 2014) and gridded 

plant species diversity data (Kreft & Jetz, 2007). We use quarterly income and weather data 

which allows us to estimate the effect of weather on incomes with high temporal resolution. In 

our empirical specification we estimate the impact of quarterly precipitation and temperature 

shocks, measured in absolute distances to the mean climate, on sector incomes. We further 

interact weather shocks with biodiversity levels to measure the impact of biodiversity on income 

resilience to weather shocks. 

Our empirical results show that weather anomalies reduce crop income but partially increase 

incomes derived from natural ecosystems such as forests and fish stocks (henceforward called 

                                                        
3 Our approach is similar to the one employed by Barbier (2007) who models biodiversity as an input in a 
production framework. 
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environmental income). The effect of weather anomalies on total income is negative but smaller 

than the effect of weather shocks on crop income. We interpret this result as evidence for a factor 

reallocation from crop production to environmental production. Further, the results show that 

biodiversity reduces the effect of weather anomalies on both sector incomes and total incomes.  

The magnitude of these effects ranges between zero and 50 % of the incomes but depends 

however, on whether the shock occurs during the growing cycle of the biological resource or 

during the harvesting period, as well as on the weather variable. The partially positive impact of 

weather shocks on environmental income is consistent with a labor reallocation from crop to 

environmental income and an insurance function of environmental resources as suggested by 

Baland & Francois (2005). 

These results are sensitive to the level of biodiversity. The detrimental impact of weather shocks 

on crop income, on environmental income and on total income is in fact buffered in areas with 

more biodiversity. An increase of biodiversity by 1000 species per grid cell or 1.5 standard 

deviations reduces the effect of weather shocks on incomes by zero to 25 percentage points, but 

again depends on the timing of the shock in either the growing or the harvesting period, and on 

the type of weather anomaly. This suggests that increasing biodiversity reduces the direct effect 

of weather shocks on rural incomes and also the factor reallocation in response to weather shocks 

from crop to environmental production. This result thus shows the stabilizing role of biodiversity 

for rural incomes.  

This paper relates to two strands of literature at the intersection between environment and 

development economics. The most obvious is the literature on the value of biodiversity. These 

include studies on the positive impacts of biodiversity on production (Brock and Xepapadeas, 

2003; Tilman et al., 2005; Chavas and Di Falco, 2012) and on risk and resilience (Common and 

Perrings, 1992; Baumgärtner, 2007; Smale et al., 2007; Quaas and Baumgärtner, 2008; Di Falco 

and Chavas, 2009; Finger and Buchmann, 2015). However, none of these papers address the 

question of how biodiversity affects rural incomes while taking factor reallocation across sectors 

into account. We aim to fill this important gap by making use of a very large set of panel data 

from twenty different tropical countries. 
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The second related body of literature is on the estimation of the welfare-supporting role of 

resources in the developing world. There is, indeed, some empirical evidence highlighting the 

positive contribution of conservation areas in Costa Rica and Thailand to local incomes (Sims, 

2010; Andam et al., 2010; Ferraro et al; 2011). This paper uses a (much) larger panel data set: 

data consists of 7978 households in 334 villages and 23 countries. It shows that biodiversity 

conservation can play an important role in poverty alleviation in developing countries. 

Importantly, it shows that the welfare-supporting role of natural resources is larger in the 

presence of adverse weather shocks. Although biodiversity conservation may constrain 

production in rural areas of developing countries, our study shows that it increases the resilience 

of rural incomes to weather shocks. This insurance effect of natural resources has important 

welfare consequences for poor rural households that face incomplete credit and insurance 

markets (Baland & Francois, 2005), and adds to the benefits of protected areas for biodiversity 

conservation and poverty alleviation (Wunder, 2001; Sunderlin et al., 2005; Andam et al., 2010; 

Sims, 2010; Ferraro et al., 2015). 

The paper proceeds in the following way. In the next section we set up a theoretical framework 

to highlight the mechanisms and to derive an empirical framework. In the following sections we 

present our data, derive our identification strategy and show our results. We conclude the article 

with a discussion. 

Model 

Consider a rural household that can derive income from agriculture, from natural ecosystems, 

and from other sources such as wage work or business. The problem of the household is to 

allocate production factors between these economic sectors in order to maximize utility from 

consumption. For simplicity we focus on labor and assume that all sector incomes are increasing 

and weakly concave in labor 𝐿! allocated to the respective sector i. Let 𝐿  denote the total labor 

endowment of the household such that 𝐿!! ≤ 𝐿. The constraint on labor allocation reflects that 

households in rural areas of developing countries are mainly self-employed and face 

malfunctioning labor markets (Banerjee & Duflo, 2007).  

Rural incomes are also affected by weather outcomes (e.g. Mendelsohn et al. 2007). Droughts, 

heavy rains, late frosts or heat waves can harm biological growth and reduce output from 
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agriculture and natural ecosystems. Let 𝜀 denote a weather shock, i.e. a deviation from normal 

weather conditions with negative impact on output such that !!
!

!"
≤ 0. This negative impact may 

vary across sectors with some sectors being more and others being less affected by weather 

shocks. Labor productivity may also depend on biomass levels such as the standing timber 

volume or the crop yield. A weather shock that reduces biomass growth therefore also reduces 

labor productivity such that !
!!!

!"!!!
≤ 0.  

However, biodiversity reduces the impact of weather shocks on biomass production (Isbell et al. 

2015). A larger set of species may stabilize biomass production directly via a portfolio or 

covariance effect (see e.g. Lehman and Tilman, 2000) or indirectly by stabilizing ecosystem 

services such as pollination or nutrients cycling (MEA, 2005). Let 𝜇 denote the biodiversity 

level. We follow Baumgärtner and Quaas (2010) by assuming that biodiversity has no effect on 

mean production (i.e. no overyielding in the words of Lehman & Tilman (2000)) but that it 

reduces the variance of production by reducing the impact of a weather shock, such that !!
!

!"
= 0 

and !
!!!

!"!#
≥ 0, respectively. In contrast to Baumgärtner and Quaas (2010) we are concerned with 

biodiversity of the natural environment and not with agrodiversity that can be manipulated by the 

farmer. We therefore take the biodiversity level as exogenously given. To focus on the 

stabilizing effect of biodiversity, we assume that the only effect of biodiversity on labor is 

through the channel of the weather shock i.e. biodiversity reduces the direct effect of weather 

shocks on production and the effect of weather shocks on labor productivity. 

Taking the weather outcome as given and observing the biodiversity level, the household’s 

optimization problem is, 

max𝑳 𝑌! 𝐿! , 𝜇, 𝜀!             (1) 

s.t. 𝐿!! ≤ 𝐿 and where 𝑳 denotes the vector of sectoral labor allocation. The first order 

conditions is 

!!!(!!,!,!)
!!!

= !!!(!!,!,!)
!!!

= 𝜔 for all i and j and with   𝑖 ≠ 𝑗      

  (2) 
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and 𝜔 denoting the shadow value or the marginal productivity of labor. In the case where a labor 

market with a given wage rate exists, the marginal productivity of labor, 𝜔, equals the wage rate. 

The optimization behavior of the households implies that the labor allocation is a function of 

weather shocks and the biodiversity level as they jointly determine the marginal productivity of 

labor. When a household observes a weather shock it may reallocate labor from more affected 

economic sectors to less affected sectors. The impact of weather shocks on sector income is 

therefore given by its direct impact and its impact on labor allocation, 

!!!

!"
= !!!

!"
+ !!!

!!!
!!!

!"
⋛ 0.         (3) 

The direct impact of weather shocks on output is negative by assumption but the effect of 

weather shocks on labor input may be either positive or negative. To see this, note that the 

optimization implies that the labor constraint holds with equality such that 𝐿!! = 𝐿. It follows 

that !!!

!"! = 0. If labor is withdrawn from one sector it is reallocated to another sector. The 

overall effect of the weather shock on sector incomes is therefore either negative or positive and 

depends on the relative size and direction of the direct and the indirect effect. However, the 

effect of a weather shock on total income is given by 

!"
!"
= !!!

!"! ≤ 0.           (4) 

Only the direct effects on sector-wise incomes affect total incomes as the labor reallocation 

effects cancel out. This result follows directly from the envelope theorem.4  

Next, we consider how biodiversity affects the weather induced income shocks. For the sector-

wise income shocks we have 

!!!!

!"!#
= !!!!

!"!#
+ !!!

!!!
  !!!!

!"!#
⋛ 0.         (5) 

Biodiversity reduces the direct impact of weather shocks on sector incomes by assumption but 

has an either positive or negative impact on labor allocation. As before, the labor reallocation 

impacts cancel out in the income portfolio such that  

                                                        
4 It is easy to verify this result using !"

!"
= !!!

!"! + !!!

!!!
!!!

!"! = !!!

!"! + 𝜔 !!!

!"!  with !!!

!"! = 0. 
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!!!
!"!#

= !!!!

!"!#! ≥ 0.           (6) 

This result implies that biodiversity reduces the impact of weather shocks on total income. 

To illustrate the mechanism in the model, consider a simplified version with only two sectors, 

agriculture and environment, and linear marginal productivities of labor. 

Error! Reference source not found. depicts the marginal productivities over labor allocated to 

the respective sector. The x-axis shows the labor allocated to agriculture and environmental 

production. On the right corner, all labor is allocated to agriculture while all labor is allocated to 

environmental production in the left corner. In optimum, the marginal labor productivity is equal 

in both sectors which is represented by 𝐿! = 𝐿!∗  and 𝐿! = 𝐿 − 𝐿!∗  in the figure. Agriculture 

income is given by the area under the straight line A-E while environmental income is given by 

the area under the line from E to D. The sum of both areas is total income, i.e. the integral over 

the curve A-E-D.  
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Figure 1: Linear illustration of the model. 

Consider a weather shock in a low biodiversity area that reduces the labor productivity in 

agriculture to the line A’-C’ and the labor productivity in environmental production to D’-B’. 

Without labor re-allocation, the marginal productivity of labor in environmental production is 

higher than in agricultural production. The new optimal labor allocation changes therefore to 𝐿!∗  

i.e. labor is reallocated from agriculture to environmental production. Total income reduces to 

the area under the curve A’-E’-D’ but environmental income may increase after the weather 

shock as a consequence of the labor reallocation. Now consider an area with high biodiversity 

levels. The same weather shock may decrease the marginal labor productivity in agricultural to 

the same level as in the previous case (A’-C’) but it affects environmental income to a lesser 

extent. Assume that marginal labor productivity in environmental production decreased only to 

D’’-B’’. More labor is allocated to environmental income and the new labor optimum is 

represented by 𝐿!∗ . Although total income decreased less in high biodiversity case compared to 
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the low biodiversity case, agricultural income decreases more as more labor is reallocated to 

environmental production. 

Our theoretical findings suggest that 1) weather shocks reduce total incomes and that 2) 

biodiversity reduces this negative impact of weather shocks on total incomes. If these two results 

are also true for sector incomes is an empirical question. Weather shocks would have a positive 

effect on sector incomes if a positive effect of weather shocks on factor allocation outweighs the 

direct negative effect of weather shocks on production. Biodiversity would have a stabilizing 

effect on sector incomes if it counteracted the effect of the weather shock, at least partially. We 

answer this question empirically in the next sections. 

Data 

The empirical analysis is based on a large panel of quarterly income data in 20 tropical countries 

combined with gridded weather and biodiversity data. We describe the data sources for income, 

biodiversity and weather in the following. The summary statistics are given in Appendix A1 and 

the distribution of weather shocks are shown in Appendix A2. 

Income 

The study uses the income data from the Poverty and Environmental Network (PEN) from 

CIFOR. The PEN survey is the largest survey on rural households that payed special attention to 

environmental incomes. The data consists of 7978 households in 334 villages and 23 countries 

with interviews taking place every three month within one year. The survey period was from 

2005 to 2010. The selection of the villages was not randomly but the sample is representative for 

tropical and sub-tropical landscapes with at least some access to forest resources. The survey is 

described in more detail in Angelsen et al. (2014). The location of PEN study sites are shown in 

Figure 2. 

We use quarterly net incomes measure in PPP dollars per adult equivalent. Incomes are net 

production costs but capital depreciation is not accounted for. To define the income sectors for 

our analysis we split the income data into crop income, environmental income and other income. 

We separate crop income from livestock income as livestock may serve as a buffer stock, 

following an opposite trend as crop income (see Noack et al. 2015). The median crop income 

share in our sample is 25 % (see Appendix A1). Environmental income includes all incomes 



10 
 

from non-cultivated sources such as fish, timber and non-timber forest products (excluding 

products from plantations) and other environmental goods and services. The median 

environmental income share in our sample is 21 %. Other incomes include business, wages and 

livestock income as well as remittances and government transfers. Although intuition suggests 

that business incomes and wages may be less affected by weather shocks than agriculture, many 

wage work is related to agriculture. Local businesses in turn may directly depend on agricultural 

incomes of their customers to generate income. We focus therefore on crop and environmental 

incomes and report the estimates for `other incomes’ only for completeness. 

 

Figure 2 Biodiversity levels from Kreft and Jetz (2007) and PEN study sites. Each PEN study 

sites represents several surveyed villages. 

Biodiversity 

The data on biodiversity are gridded data of the number of plant species per 1 degree grid cell 

from Kreft & Jetz (2007). Kreft & Jetz use 1,032 species richness accounts to compute the 

gridded data with three different methods. They use kriging which depends on spatial 

autocorrelation, a regression model that is based on geography, climate, vegetation and 

evolutionary history as well as a model that uses the information of kriging and the regression 

model. We use the regression results as they conserve local differences better than the two other 

models that are based on spatial autocorrelation. Although we use data on plant species richness 

they may be representative for biodiversity in general as diversity of different taxa is positively 

correlated (Siemann et al. 1998; Haddad et al., 2001; Qian et al. 2008). We use linear 

Number of Species
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interpolation to compute the village level biodiversity levels from the gridded plant species 

richness data. 

Weather  

To relate the household data to climatic conditions we use the gridded climate data of the 

Climate Research Unit of the University of East Anglia (CRU TS3.21). The CRU data contain 

monthly time series of temperature, precipitation and other climate variables spanning the period 

from 1901 to 2012 and covering the whole globe with 0.5 degree resolution. It is based on the 

analysis of over 4000 individual weather station records (Harris et al. 2014). These data are most 

commonly used in economic studies (Aufhammer et al., 2013; Dell et al. 2014). To compute the 

weather shocks per village and quarter we use absolute values of normalized weather deviations 

i.e. the distance to the normal climate measured in standard deviations. The normalization is 

based on the village mean and standard deviation of a reference period from 1980 to 2010.5 This 

specification assumes first that the expected climate maximizes local production such that any 

deviation from the mean reduces output and second that local production can adapt to variable 

climate which we account for with the standardization. This definition of a shock has the 

advantage that the study villages have similar probabilities to experiences a shock. Geographical 

selection bias is therefore a minor concern for our results. 

We use average temperature and total precipitation of the survey quarter to compute the weather 

shocks. Alternative specifications such as days in different temperature bins (see e.g. Burgess et 

al. 2014) are less meaningful for our purpose as our study area spans large parts of the tropics 

and farmers in our sample cultivate over 300 crop types. While our specification assumes that 

local deviations from the reference climate are the relevant variables, temperature bins assume an 

equal response of incomes to an additional degree day irrespective of the local mean.  

Empirical Strategy 

Our empirical strategy on the effect of weather anomalies and biodiversity on income relies on 

(i) the panel nature of our dataset and (ii) the exogenous variation in the weather anomalies. Of 

                                                        
5 Log deviations of weather as in Bazzi (2015) lead to qualitatively similar results but we see no theoretical 
foundation for declining marginal effect of weather shocks on income in our case. 
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particular interest is the interaction between the weather shocks and biodiversity.6 The equation 

to be estimated is: 

income!"#$ = 𝛼!  shock!"# + 𝛼!  shock!"#×diversity!" +   β  X!"# + 𝛾!"# + 𝛿! + 𝜖!"#$ (8) 

Where the dependent variable is income of household i in village j, in World Bank region k and 

in quarter t. Income is transformed using the inverse hyperbolic sine transformation (Burbidge et 

al.,1988) to account for the log normal distribution of incomes and the negative values in seasons 

that are dominated by investment. The interpretation of the coefficients is similar to the 

interpretation for log-transformed incomes. In the baseline specification, the vector X!"# contains 

quarterly village level temperature and precipitation means to account for the seasonality of the 

data. The term 𝛾!"# denotes household fixed effects, 𝛿! is a linear time trend and 𝜖!"#$ represents 

the error term. 

The shock variable denotes a vector that includes the normalized precipitation and the 

temperature anomalies in absolute terms as defined in Section 0. We include anomalies both of 

the current and lagged quarters as most of the crops or forest products that are harvested in the 

current quarter were growing already in the previous quarter. We expect therefore that lagged 

weather shocks which affected plant growth and mortality rates reduces the harvestable biomass 

while weather shocks in the current quarter may affect either the biomass or the harvesting 

process. 

As we cannot separate the channels of the weather shocks on income, the direct effect and the 

effect on factor reallocation are both captured by the coefficient 𝛼!. The same holds true for the 

direct and the factor reallocation effects of biodiversity on income shocks that are both captured 

by the coefficient 𝛼!. If biodiversity reduces the impact of weather shocks on sector income and 

total income then 𝛼!𝛼! < 0, i.e. both coefficients have opposite signs.  

The biodiversity measure is  

                                                        
6 It is important to stress that the interaction between weather anomalies and biodiversity should provide a consistent 
parameter estimate even if biodiversity is endogenous. Nizalova & Murtazashvili (2016) show both analytically 
a n d  with simulations that  Ordinary L e a s t  Squares (OLS) estimate on the interaction effect is biased but 
consistent. Several authors also exploit the exogenous variation in one variable to estimate interaction effects with 
one potentially endogenous variable (e.g. Glewwe et al. 2009, Banerjee et al. 2007, 2010).  
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diversity!" = 𝜇!" − 𝜇!, 

where 𝜇!" is the biodiversity of village j in region k and 𝜇! is the mean biodiversity in region k. 

Demeaning by region removes the effect of unobservables that are correlated with biodiversity 

and vary on regional level (see e.g. Wooldridge (2002, p.330) and Balli & Sørensen (2013)).7 It 

also simplifies the interpretation of the coefficients. After demeaning, 𝛼!, measures the marginal 

effect of weather shocks on income for average region specific biodiversity levels instead of the 

marginal effect of weather shocks under the absence of biodiversity which would be the case 

without demeaning.  

Biodiversity may be correlated with other variables that change the impact of weather shocks on 

income. The household fixed affects capture the effect of these unobservables on income levels 

and demeaning of biodiversity with regional means removes the effect of regional varying 

unobservables on the interaction term. However, biodiversity may be correlated with some 

variables even within a region that affect the impact of weather shocks on income. The most 

relevant variable is terrain which is highly correlated with biodiversity (Kreft & Jetz, 2007) and 

may affect the access to markets. To control for these confounding factors we include interaction 

terms of weather shocks with distance to the nearest road and distance to the nearest city in a 

second regression specification. Furthermore, the impact of weather shocks on income may 

differ substantially depending on the season. As our study area covers the tropics, seasonality is 

less pronounced and most areas have several cropping seasons with a growing season exceeding 

200 days (Fischer et al., 2012). As it may not be sufficient to include average seasonal climate, 

we add an interaction term between weather shocks and the average seasonal climate in the 

second regression specification. We center all controls with the regional means to simplify 

interpretation of the coefficients. 

                                                        
7 The effect is the same as interacting regional dummies with the weather shocks. However, the 
interpretation of the effects changes since 𝛼! is then the effect of weather shocks on income in the 
baseline region in the absence of biodiversity. We prefer demeaning because of the ease of interpretation. 

 



14 
 

Results 

This section reports our empirical results. Based on our theoretical analysis we expect that 

weather shocks reduce total income. We expect further that weather shocks reduce incomes in 

weather sensitive sectors and that they either increase or decrease incomes of less weather 

sensitive sectors. We interpret an increase of incomes in sectors in response to weather shocks as 

evidence for factor reallocation and an income stabilizing function of these sectors against 

weather shocks. Biodiversity reduces the impact of weather shocks on total income if the 

interaction term coefficients are positive. The same would be true for sector incomes if factor 

reallocation is not taken into consideration. If biodiversity also affects factor productivity, a 

stabilizing effect of biodiversity implies that the coefficients of the interaction of weather shocks 

and biodiversity have opposite signs to the coefficients of weather shocks.  

Table 1 reports regression results of the baseline specification in the first four columns while the 

results for the specification with additional interacted controls are given in the last four columns. 

All regressions include household fixed effects, linear time trends and current and lagged 

quarterly climate means (not shown). The dependent variable is inverse hyperbolic sine 

transformed crop income, environmental income, other income and total income. The weather 

shock is represented by the precipitation shock in the current quarter, in the lagged quarter and 

the equivalent for temperature shocks. In the baseline specification, only biodiversity is 

interacted with weather shocks. In the second specification with interacted controls, weather 

shocks are further interacted with mean seasonal precipitation and temperature levels and with 

the distance to the nearest road and distance to the nearest city. Standard errors are 

heteroscedasticity robust (round brackets) and clustered at the village level [square brackets]. A 

specification without biodiversity is given in the Appendix 2 and a specification without lagged 

weather shocks in Appendix 3. 

Table 1: Weather shocks and income 

 Baseline specification  Specification with interacted controls 

 crop environment other total  crop environment other total 

Precipitation   -0.285 -0.068 0.038 -0.107  -0.175 -0.073 -0.010 -0.062 

shock (0.037)*** (0.021)*** (0.024) (0.026)***  (0.041)*** (0.023)*** (0.027) (0.029)** 

 [0.181] [0.056] [0.043] [0.083]  [0.208] [0.059] [0.052] [0.097] 
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Precipitation   -0.308 0.046 0.072 -0.068  -0.256 0.047 0.068 -0.034 

shock  (0.040)*** (0.022)** (0.026)*** (0.028)**  (0.041)*** (0.023)** (0.027)** (0.028) 

lagged [0.161]* [0.055] [0.057] [0.069]  [0.151]* [0.060] [0.058] [0.066] 

          

Temperature   0.004 0.135 -0.014 0.142  -0.190 0.109 0.069 0.144 

shock (0.040) (0.022)*** (0.026) (0.028)***  (0.046)*** (0.025)*** (0.030)** (0.032)*** 

 [0.216] [0.085] [0.050] [0.092]  [0.198] [0.082] [0.055] [0.087]* 

          

Temperature   -0.501 -0.036 0.057 -0.135  -0.662 -0.027 0.068 -0.159 

shock  (0.040)*** (0.022) (0.026)** (0.028)***  (0.043)*** (0.024) (0.028)** (0.030)*** 

lagged [0.173]*** [0.057] [0.048] [0.076]*  [0.182]*** [0.061] [0.050] [0.082]* 

          

Precipitation   0.124 0.002 -0.010 0.055  0.339 0.015 0.000 0.191 

shock (0.021)*** (0.011) (0.013) (0.014)***  (0.036)*** (0.020) (0.024) (0.025)*** 

× diversity [0.079] [0.025] [0.021] [0.036]  [0.134]** [0.049] [0.039] [0.077]** 

          

Precipitation   0.069 -0.014 -0.027 0.034  0.438 -0.068 -0.129 0.127 

shock lagged (0.026)*** (0.015) (0.017) (0.018)*  (0.045)*** (0.025)*** (0.029)*** (0.031)*** 

× diversity [0.089] [0.047] [0.049] [0.048]  [0.163]*** [0.065] [0.062]** [0.071]* 

          

Temperature   -0.103 -0.072 0.055 -0.083  -0.470 -0.070 0.123 -0.113 

shock (0.031)*** (0.017)*** (0.020)*** (0.021)***  (0.050)*** (0.028)** (0.033)*** (0.035)*** 

× diversity [0.135] [0.052] [0.037] [0.065]  [0.217]** [0.077] [0.066]* [0.106] 

          

Temperature   0.239 -0.096 -0.003 0.041  0.046 0.100 0.034 0.082 

shock lagged (0.027)*** (0.015)*** (0.018) (0.019)**  (0.040) (0.022)*** (0.027) (0.028)*** 

× diversity [0.088]*** [0.038]** [0.030] [0.047]  [0.121] [0.062] [0.046] [0.068] 

          

Seasonal climate P P P P  P P P P 

Household fe P P P P  P P P P 

Weather shock       P P P P 
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× infrastructure 

Weather shock  

× climate 

     P P P P 

Observations 31,134 31,134 31,134 31,134  31,134 31,134 31,134 31,134 

 

The results show overall that 1) weather shocks reduce total and crop income but have mixed 

effects on environmental and other incomes and 2) biodiversity reduces the effect of weather 

shocks on total and sector incomes. Generally, the effects go in the same direction in both 

regression specifications but on average, increase in magnitude when the additional controls are 

included. The standard errors are sensitive to clustering and most point estimates become 

statistically insignificant once we control for error correlation within villages. We address this 

problem below. 

Crop income stems mostly from crops that are harvested in the current season but were planted 

earlier. We therefore use the terms current quarter and harvesting season and the terms lagged 

quarter and growing season interchangeably. Note also that weather shocks are given in standard 

deviations (sd) of village weather within the reference period such that the size of one sd in 

absolute terms differ between villages. We discuss the results of the baseline specification in the 

following.  

Weather shocks generally have a negative impact on crop income. A precipitation shock in the 

harvesting season reduces crop income by about 29 % per sd while a precipitation shock in the 

growing season reduces crop income by 31 % per sd. We also find a negative effect of 

temperature shocks on crop income. While a temperature shock of one sd in the growing season 

reduces crop income by 52 % temperature shocks in the harvesting season have no measurable 

impact on crop incomes. In contrast to crop income, weather shocks have mixed effects on 

environmental income. A precipitation shock of one sd in the growing season increases 

environmental income by 5 % while a precipitation shock in the harvesting season reduces 

environmental income by 7 % per sd. A temperature shock in the growing season has no 

statistically significant impact on environmental income while it increases environmental income 

by 14 % when it occurs in the harvesting season. The smaller effect of weather shocks on 

environmental income compared to crop income suggests that environmental production is less 
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sensitive to weather shocks. The positive impact of the precipitation shock in the growing season 

and temperature shocks in the harvesting season is an indicator for factor reallocation from crop 

production to environmental production. The factor reallocation to environmental production 

after income shocks is in line with the theory of common pool resources as insurance for poor 

rural households. Overall, it shows that the effect of weather shocks on sector income can go in 

both directions.  

For total income, we have the following results. A precipitation shock in the current quarter 

reduces total income by 11 % per sd and in the lagged quarter by 7 %. A temperature shocks in 

the previous quarter reduce total income by 14 % per sd. A temperature shock of one sd in the 

current quarter increases total income by almost 14 %. This result is surprising. A possible 

explanation is that households sell their natural capital such as timber which increases their 

income temporarily but may reduce income in the long run (see e.g. Jayachandran, S. (2013)).  

However, clustering the standard errors on village level renders many of the parameter estimates 

statistically insignificant. One reason for the imprecise estimates is the high correlation of the 

different weather shocks. To address this problem we test for the joint significance of the 

weather shocks using a Wald test with the baseline regression specification and stander errors 

clustered at the village level. We find that weather anomalies are jointly significant for crop 

income and total income at the 5 percent level and for environmental income at the 10 percent 

level. We therefore conclude that weather shocks have a statistically significant impact on crop, 

environmental and total income even after correcting for the correlation of the error terms. 

The interaction between biodiversity and weather Shocks 

Next, we interpret the effect of biodiversity on weather induced income shocks. Biodiversity is 

measured in 1000 plant species per 1° grid cell. As a reference, on standard deviation in our 

sample equals 671 plant species. Biodiversity reduces the effect of weather shocks on total, crop 

and environmental income as most of the coefficients for the interacted terms have opposite 

signs to the non-interacted weather shocks. This stabilizing impact on total income is driven by 

the stabilizing impact of biodiversity on crop and environmental production. An increase of 1000 

plant species per grid cell compared to the regional average reduces the negative impact of 

weather shocks on crop income by 7 to 24 percentage points. Only the negative effect of 

temperature shocks in the current season on crop income increases with higher biodiversity 
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levels. An increase in biodiversity levels also reduces the impact of temperature shocks in the 

harvesting season on environmental income by 7 percentage points but increases the impact of 

temperature shocks in the growing season by 10 percentage points. The latter may be an indirect 

effect of factor reallocation to agriculture but as the effect flips sign after including the controls 

this interpretation may be treated with caution. Biodiversity reduces the effect of weather shocks 

on total income by 3 to 8 percentage points which shows that the stabilizing effect of biodiversity 

on crop income carries over to total income. 

Using a Wald test with the parameter estimates from the regression baseline specification and 

standard errors clustered at the village level we can show that biodiversity has a jointly 

significant effect on weather induced income shocks for crop income at the 5 percent level and 

for environmental and total income at the 10 percent level.  

To test weather biodiversity stabilizes income, we test 𝛼!𝛼! < 0 directly using bootstrapping 

with 1000 bootstrap replications. For each replication we evaluate whether 𝛼!𝛼! < 0. The 

fraction of replications for which the inequality holds can be interpreted as the probability that 

biodiversity reduces the impact of weather shocks on income. Alternatively we integrate the 

expression 𝛼!𝛼! over the multivariate normal distribution specified by the point estimates and 

the covariance matrix and accounting for the correlation of errors at the village level.8  

Table 2 shows the probabilities of the coefficients for the non-interacted and the interacted 

weather shocks to be of the same sign using the bootstrap and the integration method (in 

brackets) with the parameter estimates of the baseline specification. We perform the test for each 

weather shock and its interaction term separately. 

Table 2 Biodiversity and Weather Shocks 

Prob(𝛼!𝛼! > 0) crop environment other total 

Precipitation  anomaly 0 0.011 0.059 0 

 (0.004) (0.153) (0.068) (0.034) 

Precipitation  anomaly lagged  0 0 0.013 0.002 

 (0.056) (0.009) (0.081) (0.069) 

                                                        
8 We thank Simen Gaure for the implementation of the tests in the R package lfe. 
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Prob(𝛼!𝛼! > 0) crop environment other total 

Temperature  anomaly 0.016 0 0.007 0.009 

 (0.105) (0.032) (0.050) (0.073) 

Temperature  anomaly lagged 0 0.999 0.628 0.007 

 (0.121) (0.218) (0.227) (0.084) 

 

Table 2 confirms the observation that biodiversity reduces the impact of weather shocks on 

sector and total incomes as the probability of the coefficients for the linear and the interacted 

weather shock to have the same sign is close to zero in most cases. We conclude the biodiversity 

reduces the impact of weather shocks on sector and total incomes.  

Conclusion & Discussion 

In this paper, we examined the effect of biodiversity on weather induced income shocks. Our 

empirical result confirms in general the theoretical prediction that a weather shock reduces total 

income and that biodiversity reduces this negative income shock. The empirical results suggest 

further that labor reallocation occurs and that biodiversity reduces this labor movement. Even 

though biodiversity could theoretically increase the shock’s effect on sector income, the 

empirical analysis shows that this is not the case.  

Biodiversity conservation can therefore increase the resilience of the rural poor to climate 

change. This is especially true if climate change increase weather variability. Other mechanisms 

to mitigate the impact of weather shocks on poor rural households such as access to credit and 

insurance markets, weather robust crop varieties or better access to labor markets can supplement 

biodiversity conservation. However, biodiversity conservation may be more efficient especially 

if the off-side benefits of biodiversity conservation are taken into consideration. 
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Appendix 

Summary Statistics 

The following table gives the mean, the standard deviation, and the first, fifth and ninth decile of 

the key variables of our regressions. 

 Mean Standard 

Deviation 

10th 

quantile 

Median 90th 

quantile 

Total income [USD/AEU] 1692 3334 238 857 3523 

Crop income [USD/AEU] 434 1367 9 179 879 

Crop income share [%] 30 24 1 25 66 

Environmental income [USD/AEU] 453 1605 29 142 949 

Environmental income share [%] 27 22 4 21 62 

Other income [USD/AEU] 805 2275 41 294 1730 

Other income share [%] 43 27 9 41 81 

Annual temperature [°C] 24 4 17 25 28 

Annual precipitation [mm] 1574 653 1008 1236 2686 

Diversity [species] 1711 671 997 1662 2612 

Road distance [km] 8 23 0 2 20 

Distance to nearest city [%] 33 20 6 33 62 
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1.  Weather Anomalies 

 

2. Regression results without Biodiversity 

The following table summarizes the results for the regressions as specification (8) and (9) but 

without biodiversity. 

 Baseline   With controls 

 
crop environment other total  crop environment other total 

Precipitation  shock -0.105 -0.063 0.019 -0.027  0.039 -0.054 -0.025 0.046 

 
(0.033)*** (0.020)*** (0.022) (0.023)  (0.054) (0.026)** (0.033) (0.038) 

 [0.112] [0.049] [0.033] [0.054]  [0.214] [0.067] [0.055] [0.095] 

Precipitation  shock -0.275 0.030 0.048 -0.049  -0.353 0.002 0.071 -0.090 

lagged (0.038)*** (0.021) (0.026)* (0.027)*  (0.049)*** (0.022) (0.031)** (0.036)** 

 [0.112]** [0.055] [0.053] [0.056]  [0.160]** [0.057] [0.062] [0.077] 

Temperature  shock -0.015 0.060 0.010 0.091  -0.223 0.087 0.046 0.113 

 
(0.041) (0.024)** (0.027) (0.032)***  (0.053)*** (0.027)*** (0.034) (0.039)*** 

 [0.153] [0.067] [0.041] [0.071]  [0.177] [0.073] [0.054] [0.078] 
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Temperature  shock  -0.314 -0.125 0.063 -0.108  -0.749 0.012 0.102 -0.180 

lagged (0.045)*** (0.022)*** (0.026)** (0.034)***  (0.058)*** (0.027) (0.032)*** (0.041)*** 

 [0.125]** [0.051]** [0.040] [0.061]*  [0.189]*** [0.061] [0.053]* [0.081]** 

Observations 31,134 31,134 31,134 31,134  31,134 31,134 31,134 31,134 

Notes:  ***Significant at the 1 percent level. 

 
 **Significant at the 5 percent level. 

 
 *Significant at the 10 percent level. 

 

3. Regression results without lagged weather shocks 

  crop environment other total 

Precipitation shock -0.449 -0.072 0.032 -0.147 

 (0.038)*** (0.020)*** (0.024) (0.025)*** 

 [0.193]** [0.051] [0.040] [0.081]* 

Temperature shock 0.198 0.147 -0.035 0.193 

 (0.041)*** (0.022)*** (0.025) (0.027)*** 

 [0.223] [0.088]* [0.049] [0.097]** 

Precipitation shock 0.220 -0.015 -0.007 0.073 

× diversity (0.021)*** (0.011) (0.013) (0.014)*** 

 [0.077]*** [0.022] [0.020] [0.032]** 

Temperature shock -0.020 -0.104 0.062 -0.067 

× diversity (0.031) (0.017)*** (0.020)*** (0.021)*** 

 [0.141] [0.050]** [0.037]* [0.066] 

Seasonal climate P P P P 

Hh fe P P P P 

Observations 31,184 31,184 31,184 31,184 

Notes: ***Significant at the 1 percent level. 

 **Significant at the 5 percent level. 



27 
 

 *Significant at the 10 percent level. 

 


