UNEP WCMC United Nations Environment Programme World Conservation Monitoring Centre

Biodiversity and Ecosystem Accounting 13th Conference of the Parties, Convention on Biological Diversity, Cancun, Mexico, 4th – 17th December, 2016 Hilary Allison (hilary.allison@unep-wcmc.org)

A CARLENT

- 1. Biodiversity in the System of Environmental Economic Accounting Experimental Ecosystem Accounting (SEEA-EA)
- 2. Developing thematic species account
- 3. Opportunities for Sustainable Develop

CBD COP PRESENTATION

BIODIVERSITY IN THE SYSTEM OF ENVIRONMENTAL ECONOMIC **ACCOUNTING** – EXPERIMENTAL ECOSYSTEM ACCOUNTING

OR SEEA-EEA FOR SHORT

December, 2016

- of National Account System
- Monetary measures
- Asset and production boundaries set by economics
- Production defined as being capable of being sold in markets
- Assets defined as being owned and capable of being used for economic gain

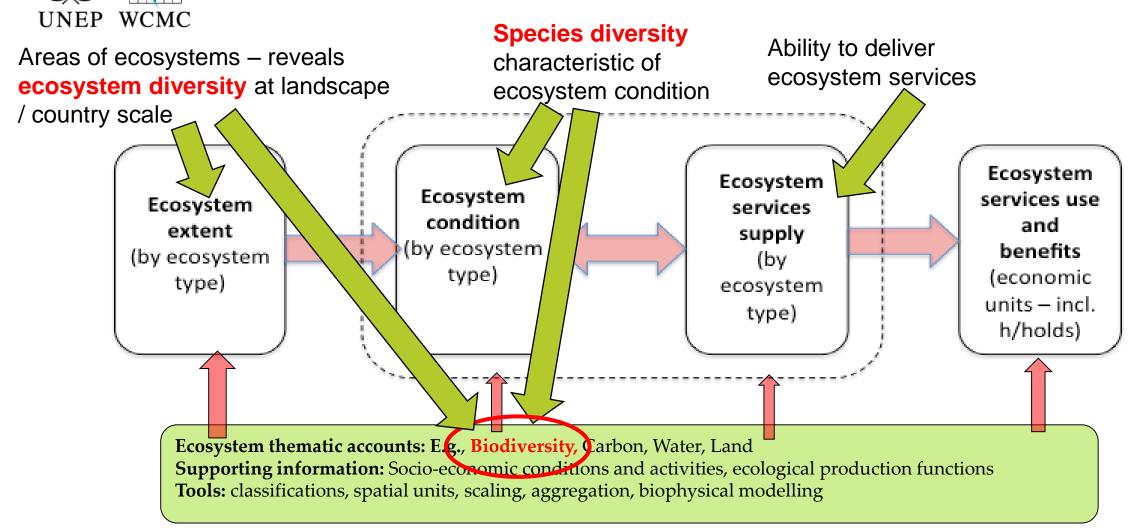
Central Framework Б В Ш S

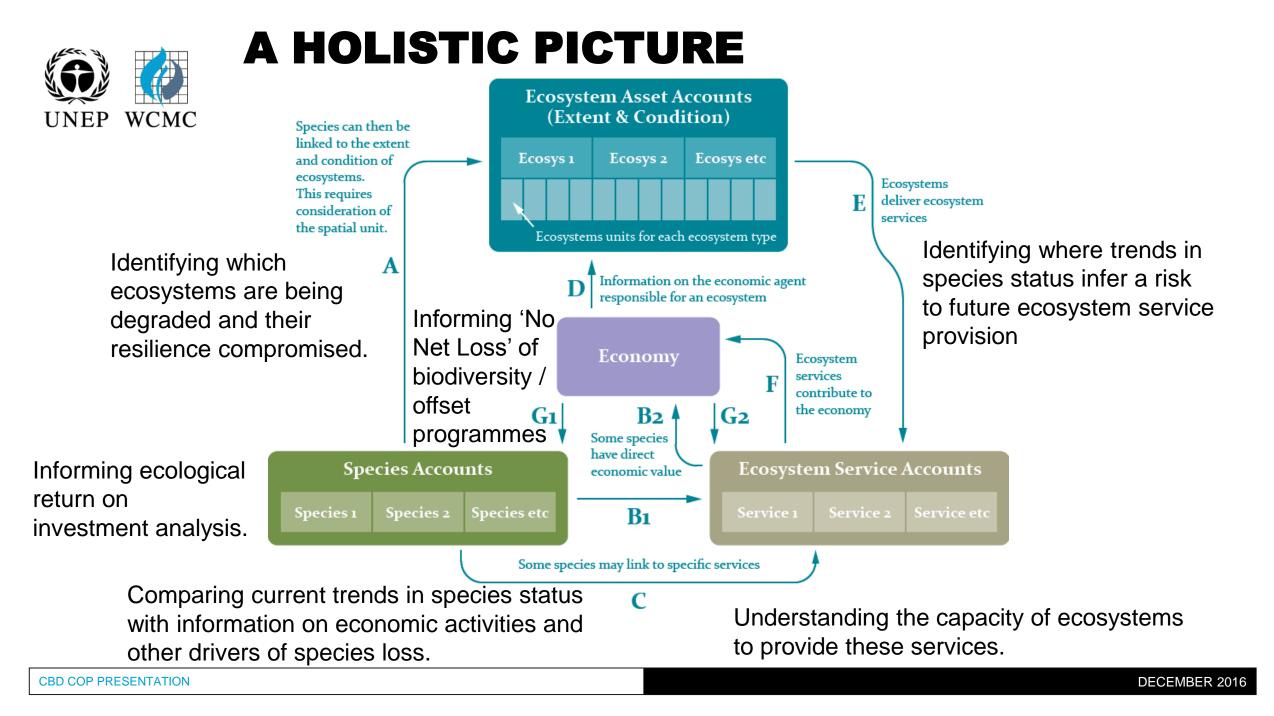
 Physical quantity measures added to monetary measures

- Asset boundary expanded
- Assets no longer have to be owned or capable of being used for economic gain

System of Environmental-Economic Accounting 2012 **Experimental Ecosystem Accounting**

- Accounting Experimental Ecosystem SEEA
- Physical quality (or condition) measures added
 - Production boundary extended
 - Production from ecosystems recognized and does not need to be sold in markets




BIODIVERSITY – A FAMILIAR DEFINITION

CBD

"Biological diversity means the variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species and of ecosystems" (CBD, 1992)

BIODIVERSITY IN THE SEEA-EEA

CHALLENGES AND BARRIERS

Experimental Biodiversity Accounting as a component of the System of Environmental-Economic Accounting Experimental Ecosystem Accounting (SEEA-EEA)

Coordinating Lead authors: Steven King and Lucy Wilson, Lead authors: Matthew Dixon, Claire Brown and Eugenie Regan. Contributing authors: Ralph Blaney, Ruth Fletcher, Hedley Grantham (Conservation International), Matthew Ling, Brian O'Connor, Marieke Sassen, Mads Christensen, Corrine Martin.

This work was undertaken by the United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) as part of the project Advancing the SEEA Experimental Ecosystem Accounting. This note is part of a series of technical notes, developed as an input to the *SEEA Experimental Ecosystem Accounting Technical Guidance*. The project is led by the United Nations Statistics Division (UNSD) in collaboration with United Nations Environment Programme (UNEP) through its The Economics of Ecosystems and Biodiversity Office, and the Secretariat of the Convention on Biological Diversity (CBD). It is funded by the Norwegian Ministry of Foreign Affairs.

1.Where can I find the information and data I need for accounting?

2.Which aspects of biodiversity should I focus on?

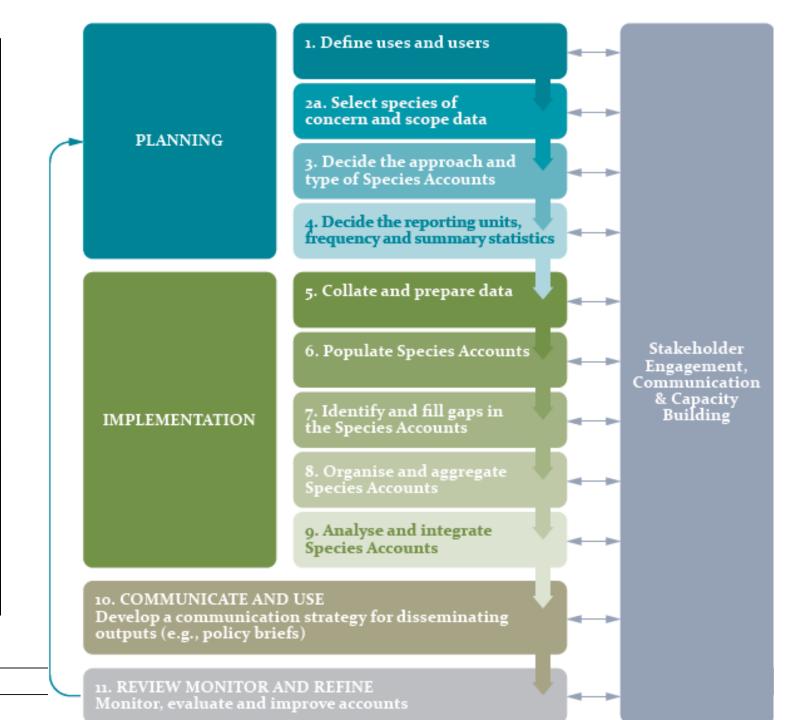
3.Which measurements of biodiversity do I capture in the accounts (e.g. species richness vs. species abundance)?

4.At which scale should I organise my information on biodiversity?

5.How do I integrate this in the wider SEEA-EEA accounts?

http://wcmc.io/SEEA_EEA_Bio_Accounting

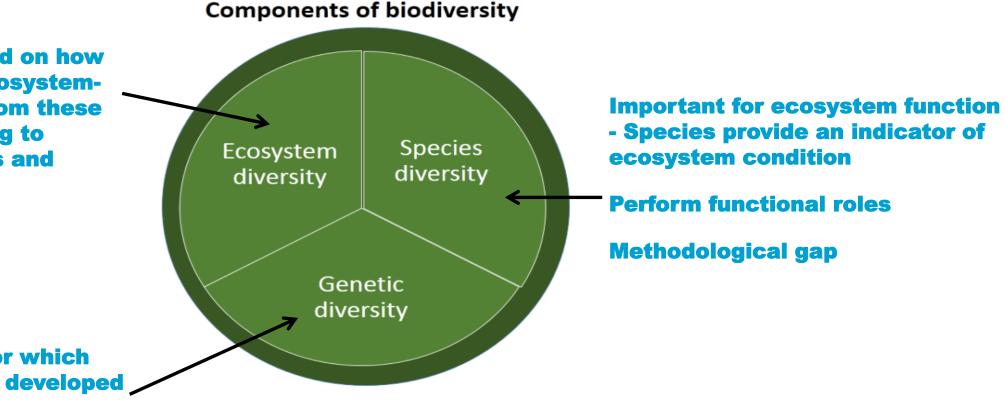
CBD COP PRESENTATION


DEVELOPING THEMATIC SPECIES ACCOUNTS

December, 2016

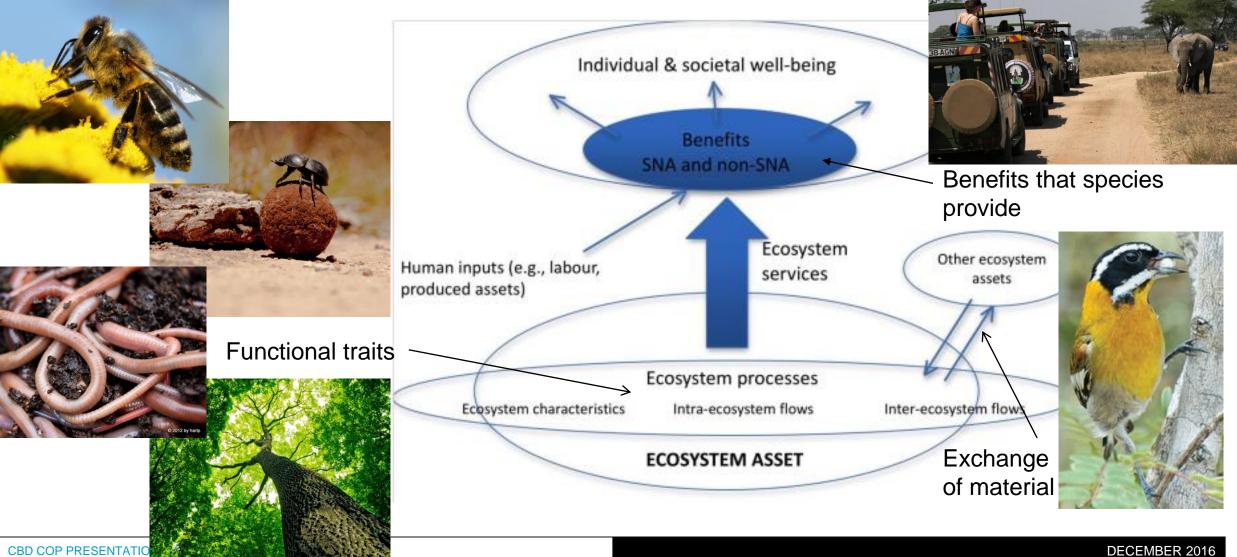
EXPLORING APPROACHES FOR CONSTRUCTING SPECIES ACCOUNTS IN THE CONTEXT OF THE SEEA-EEA

http://wcmc.io/Species_Accounting



WHY FOCUS ON SPECIES ACCOUNTS?

Information in Ecosystem Extent Accounts


Testing still required on how to communicate ecosystemlevel biodiversity from these accounts and linking to ecosystem services and policy

An important gap for which accounts should be developed , in future work

SPECIES AND THE SEEA-EEA

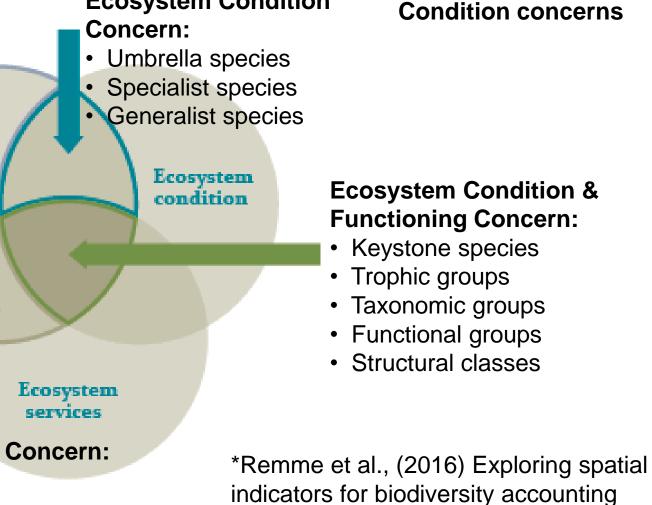
PRIORITISING SPECIES FOR ACCOUNTING

Ecosystem Condition

Reflects species are an important element of ecosystem condition and service supply and a consideration for ecosystem management in itself *

Conservation Concern:

- Threatened species
- Endemic species
- Migratory species
- Evolutionary distinct species


Thematic concerns

Direct Ecosystem Service Concern:

Species selected for

accounts

- Charismatic species
- Wild food species

CBD COP PRESENTATION

DATA ACQUISITION APPROACHES

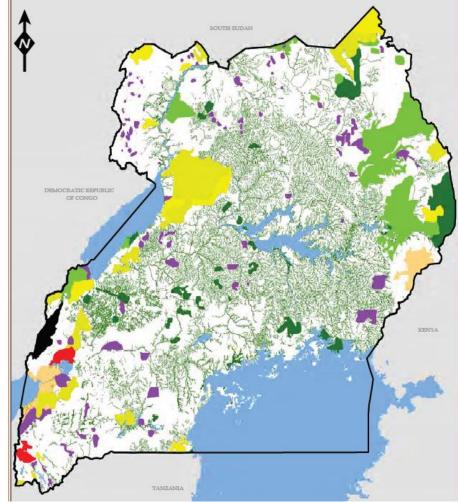
1) Direct observations of species status

- **i.** Census counts, nest counts, population estimates from surveys
- **ii.** Requires significant investment

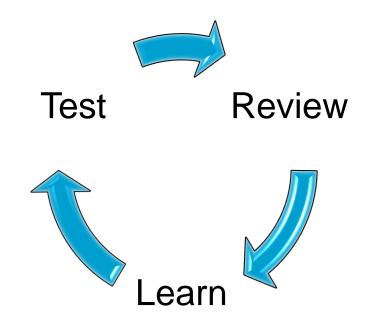
2) Habitat based modelling of species status

- i. Satellite-borne remote sensing data to model habitat condition for species and species groups
- **ii.** Based on the assumption that habitat suitability = species presence
- 3) Threat status categories
 - IUCN Red List Data soon available at National Scale
 - **ii.** Difficult to disaggregate spatially
- 4) Extent of important places for species
 - Important Bird and Biodiversity Areas, Alliance for Zero Extinction sites, National Parks, Wilderness Areas

HYPOTHETICAL EXAMPLE USING DIRECT OBSERVATION AND HABITAT BASED APPROACHES

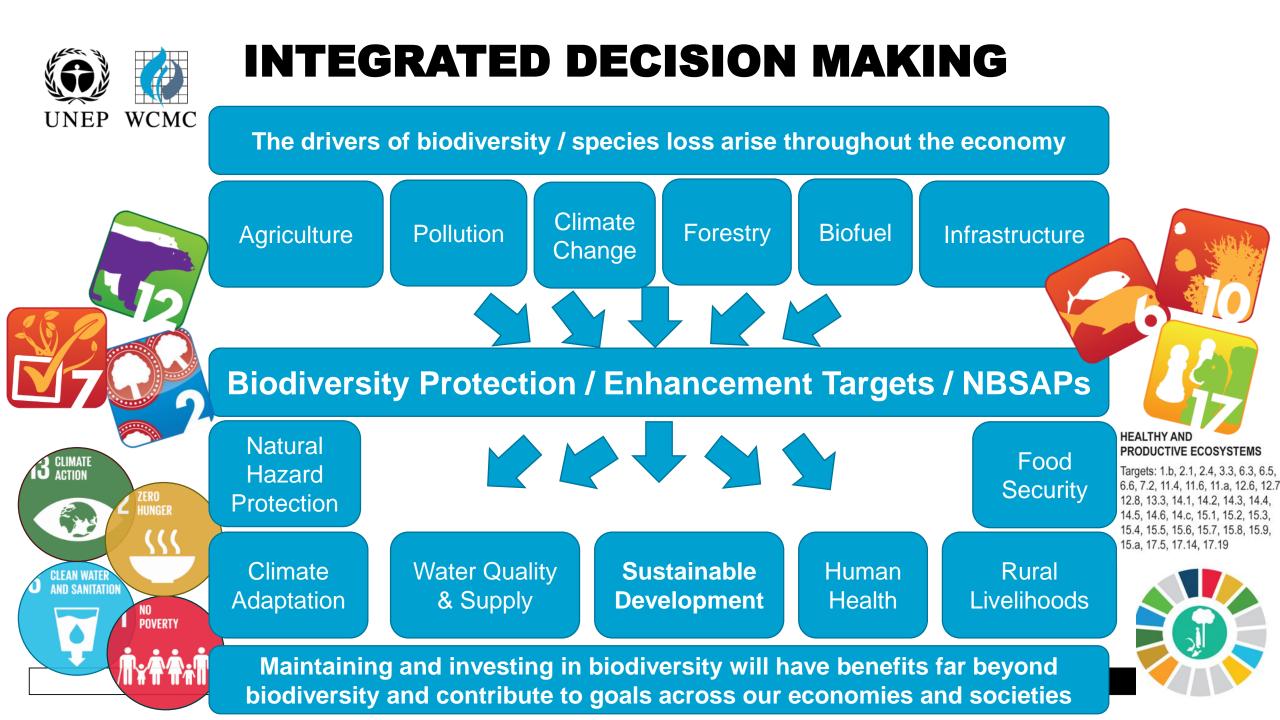

UNEP WCMC		Species or Species	Species or	Species or Species	Species or	Species or
		Group 1	Species Group 2	Group 3	Species Group 4	Species Group 5
Reference measure for a common year	Example Species	Panda	Cuckoo	Tree sparrow	Orangutan	Vertebrates
Abundance measure at start of accounting period Additions and reduction	Unit of measurement	No. of individuals	No. of individuals	Relative abundance based on population density	Hectares of suitable habitat	Proportion of original species complement
	Reference (1995)	2,000	100,000	Set to 1.0	1,000,000	85%
Abundance measure at	Opening (2005)	1,500	60,000	0.70	100,000	80%
End of accounting period	Additions	100	N/A	N/A	10,000	N/A
Net change in abundance	Reductions	200	N/A	N/A	30,000	N/A
over accounting period	Closing (2010)	1,400	65,000	0.50	80,000	70%
Relative Abundance measure	Net Change	-100	+5,000	-0.20	-20,000	-10%
at start of accounting period	Opening (% of reference, 2005)	75%	60%	70%	10%	94%
Relative Abundance measure at end of accounting period	Closing (% of reference, 2010)	70%	65%	50%	8%	82%
Net change in relative	Net change (% of reference)	-5%	+5%	-20%	-2%	-12%
period <u>Change as % of the opening</u>	Change (% of opening)	-6.7%	+8.3%	-29%	-20%	-13%
relative abundance	1-1-01					DECEMBER 201

SPECIES-LEVEL BIODIVERSITY ACCOUNTS


	SanMart	'n	-							Experimental Ecosystem Accounts for the Central Highlands of Victoria					
Ecosystem type	em (% biodiversity retained) 2009 2011 2013		Vascular plants (% biodiversity retained) 2009 2011 2013			· · · · ·		ained)							
Palm swamps	90.3%	90.1%	90.0%	87.0%	86.9%	86.8	Table 9.3a.	Change o	over time ir		-			UCN Red	List of
Humid forest with high hills	88.3%	87.8%	87.4%	89.2%	88.8%	88.4	threatened	Extinct		Endangered	d Vulnerable	Near Near	Least	Lower Risk	Total
Humid forest with low hills	87.7%	87.3%	86.9%	88.6%	88.2%	87.8	1990	0	0	0	2	2	0	12	16
Humid montane forest	91.1%	90.8%	90.5%	91.1%	90.7%	90.5	1995 2000 2005	1 1 1	0 1 3	6 7 8	10 15 13	1	0 1 8	10 14 2	27 40 40
Lowland terra firme forest	86.5%	86.0%	85.6%	86.1%	85.5%	85.1	2010 2015	1 0	4 8	7 6	10 9	11 9	8 12	0	42 44
Floodplain forest	86.7%	86.2%	85.8%	86.6%	86.1%	85.7	Net change 1990 to 2015	0 5	8	6	7	7	12	-12	28

Uganda Demonstration Accounts

- **a.** Species accounts
- **b.** Ecosystem extent accounts
- **C.** Foundation for set of ecosystem accounts



CBD COP PRESENTATION

OPPORTUNITIES FOR SUSTAINABLE DEVELOPMENT

December, 2016

THANK YOU!

Images: Down to earth, Peter Hartl,; The production of Shea Butter, Carsten ten Brink, CC courtesy of Flickr ; Prunus Africana (Hook.f.) Kalkman (ROSACEAE), Scamperdale; Cabrero (Spindalis zena, Thraupidae), Rodrigo Medel, all CC courtesy of Flickr. Remainder reproduced under license from Shuttershock

December, 2016

CBD COP PRESENTATION