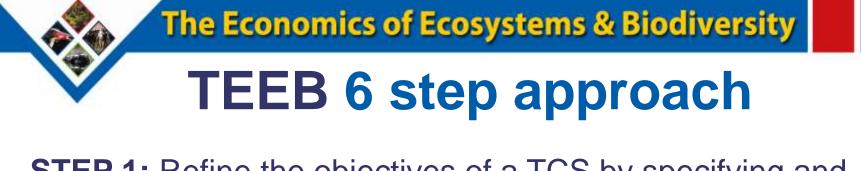
The Economics of Ecosystems & Biodiversity

TEEB Country Studies CBD-COP 13 side event 6 December 2016, Cancun

Dr Salman Hussain UNEP TEEB Office


This project is funded by the European Union

teebweb.org

The Economics of Ecosystems & Biodiversity

TEEB Country Studies

STEP 1: Refine the objectives of a TCS by specifying and agreeing on the key policy issues with stakeholders

STEP 2: Identify the most relevant ecosystem services

STEP 3: Define information needs & select appropriate methods

STEP 4: Assess and value ecosystem services

STEP 5: Identify and outline the pros and cons of policy options, including distributional impacts

STEP 6: Review, refine and report: Produce an answer to each of the questions

The Economics of Ecosystems & Biodiversity

Policy Identification: Over-arching questions

What policy issues are critical to the host country?

- 1. What will the policy act *upon*?
 - Single biome; multiple biomes; single sector; cross-sectoral
- 2. How *valuable* is/are the biome(s)/sector(s) to the economy?
- 3. What is the *incremental change* brought about by the policy?
- 4. Who are the *key stakeholders* and governance bodies (sub-national and national)?
- 5. On-going research

The Economics of Ecosystems & Biodiversity

Thank You!

Dr Salman Hussain salman.hussain@unep.org UNEP TEEB Office

This project is funded by the European Union

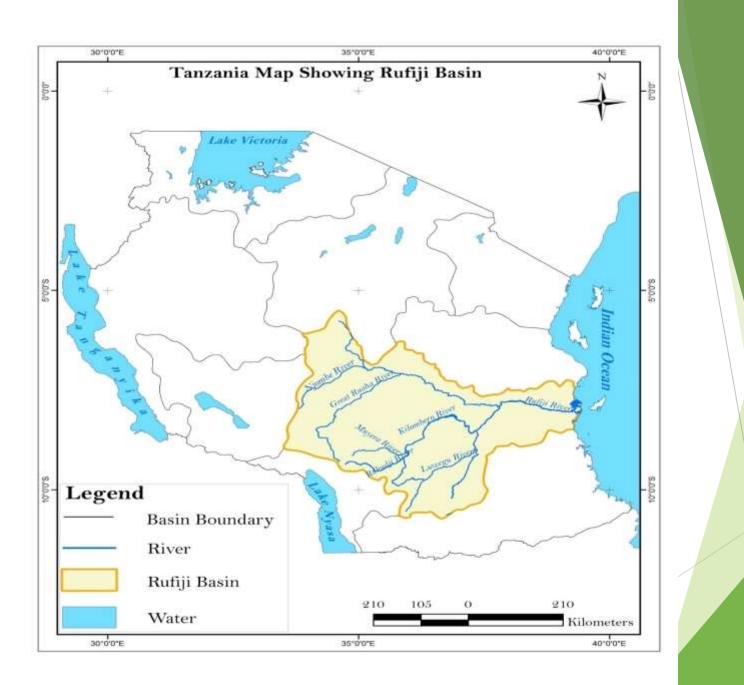
teebweb.org

TEEB - Tanzania

THE RUFIJI RIVER BASIN

Thomas J. Chali VICE PRESIDENT'S OFFICE-Environment

This project is funded by the European Union


TEEB Project in Tanzania

The study aimes at creating and comparing alternative quantitative scenarios for land management of the Rufiji River Basin in Tanzania.

The Rufiji watershed is critical for Tanzania's development;

- draining 21% of the country,
- The basin offers a variety of ecosystems and biodiversity services including (food, timber, Carbon sequestration, biodiversity etc

There are competing water use and land use options in the basin; afforestation of mountain grasslands, planned dam construction for irrigation and HEP, and water-intensive farming practices

In 2010 the GoT launched Southern Agricultural Growth Corridor of Tanzania (SAGCOT) initiative as a PPP;

Unlocking the agricultural potentials of the basin

- 350,000 hectares in profitable production, serving regional and international markets.
- tens of thousands of smallholders become commercial farmers, with access to irrigation and weather insurance.
- at least 420,000 new employment opportunities created in the agricultural value chain

Main Objective

"To examine major land uses/cover in the Rufiji river catchment and conduct policy scenario analyses to inform policies for better land management in the basin; through detecting long-term trends and changes in stream flows and how the changes are correlated to land use/cover changes".

Scope of the Study

- In the Mountain Highland zone (1,900 -2,700 m.a.s.l.), examined and compared impacts of continued traditional conversion of mountain grasslands to pine and eucalyptus forest and agricultural expansion
- In the Midlands zone (1500 and 1900 m.a.s.l.), examined the impacts on ecosystem services under the BAU scenario, under traditional conversion of natural woodlands or forests into tea plantations, fruits plantations, as per the BRN initiative.

In the Lowlands Rufiji River Delta zone (0 to 2 m.a.s.l.), considered the BAU scenario involving continued traditional conversion of mangrove forest to traditional shifting paddy cultivation

Scenarios

Business As Usual (BAU)

simulated to estimate projected changes in the Kilombero cluster under continuation of existing trends (e.g. population growth, agriculture) and related impacts on the environment (e.g. carbon sequestration and water yield)

SAGCOT Scenario

Simulated to estimate projected changes in the Kilombero cluster under the SAGCOT strategy

Aspects: water, food, carbon sequestration, land use changes

Research Findings

- Highest sediment yield is observed in the uplands and midlands regions.
- Lowlands have lower sediment yield because the wetland acts as sediment trap.
- Between December and April the basin experiences a water surplus due to excess of rainfall over evaporation.
- Between May and October the evaporation exceeds the precipitation and results in water deficits
- Decline in carbon sequestration

Policy Implications

BAU

- Population growth is projected to increase over time following the historical trend, which will lead the number of inhabitants to double by the year 2030
- Population growth will cause a steady increase in agriculture land to cover the demand for food, which increases at the same rate as population
- Total income from agriculture, which is the sum of profits from smallholders and the labor income of farm workers, will increase at its historical rate
- Land conversion takes place to increase the amount of agriculture land and urban area to accommodate the needs of the growing population

SAGCOT

- Expansion of farmland by 52,000ha (2018-2022)
- growth in food production for domestic and export and income
- risk of overusing surface and ground water
- gains from SAGCOT may be short-lived, as side effects and competition for water could emerge in the medium term
- attractive for the population and businesses (more land for settlement and agriculture)

Policy Recommendations

- both scenarios, the expansion of agriculture land bears the risk of over-extraction of surface water especially dry months
- Need for identification of suitable crops for dry months and investments in water efficiency technologies
- Need for assessment of water budget for proper planning of the basin (hectares, crop types)

Conclusion

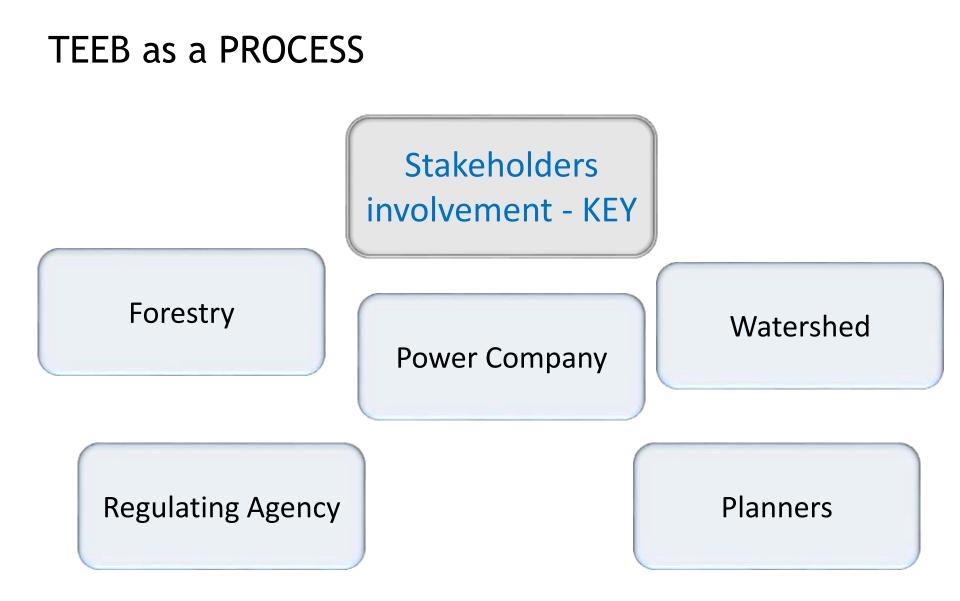
"There is need for TEEB project not to end up with NO or YES answers but balanced scenario (negotiated from BAU and SAGCOT) to advice the decision makers for the development path that will maximize benefits and minimize externalities to the environment"

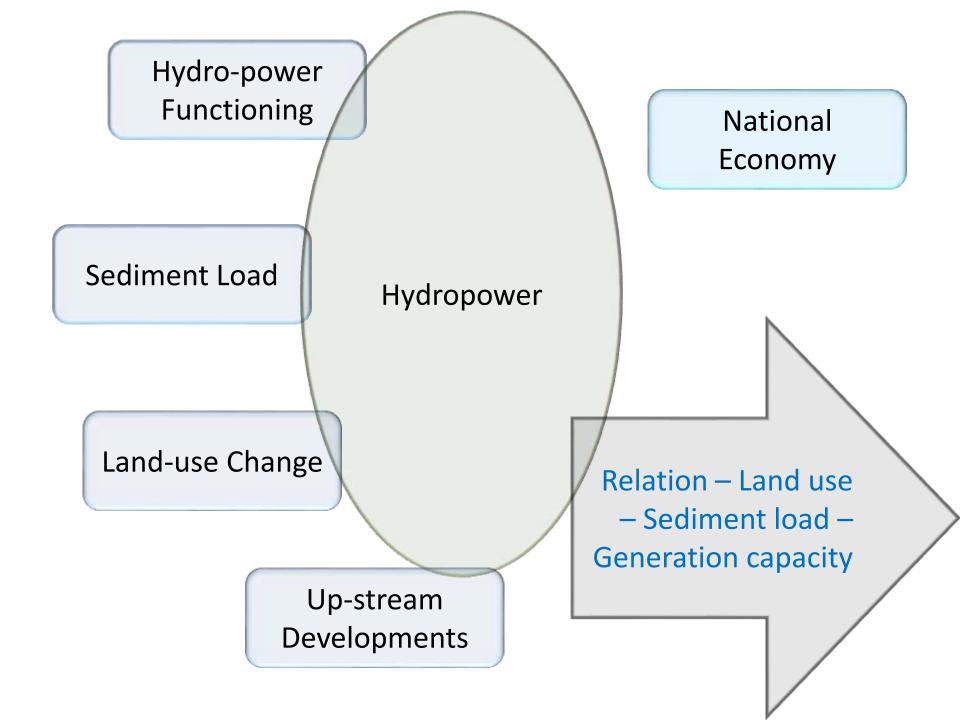
Aknowledgement

- Institute of Resource Assessment (IRA) University of Dar es Salaam (Technical TEEB Team)
- UNEP TEEB Team (Technical Backstopping)
- Generous Support of European Commission

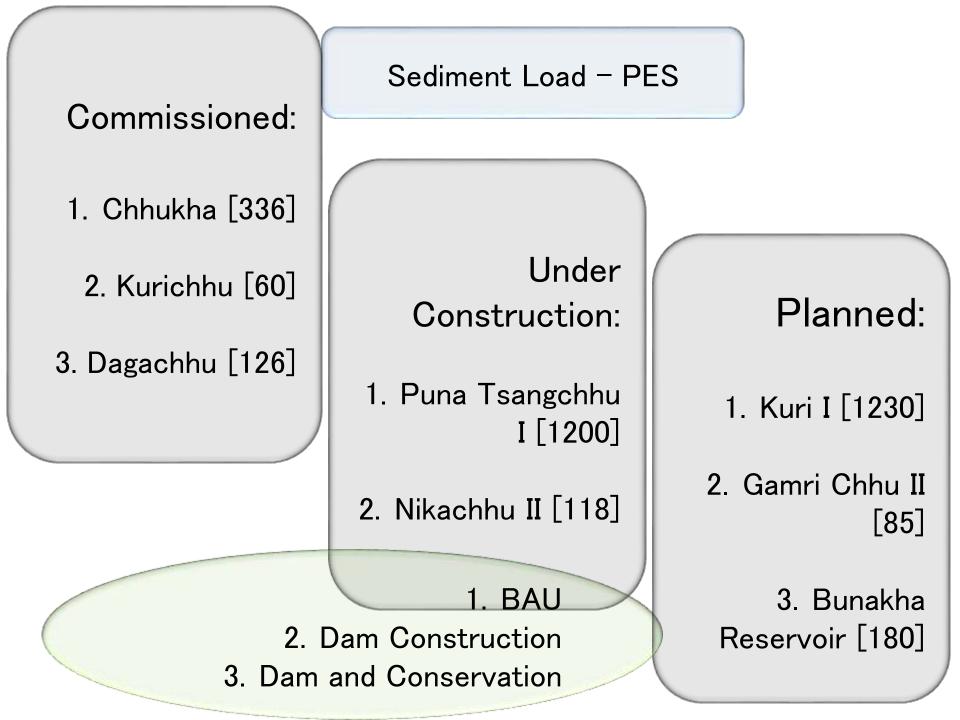
Thank You Asante Sana Mucho gracias

TEEB-Bhutan


This project is funded by the European Union


December 6, 2016 Cancun

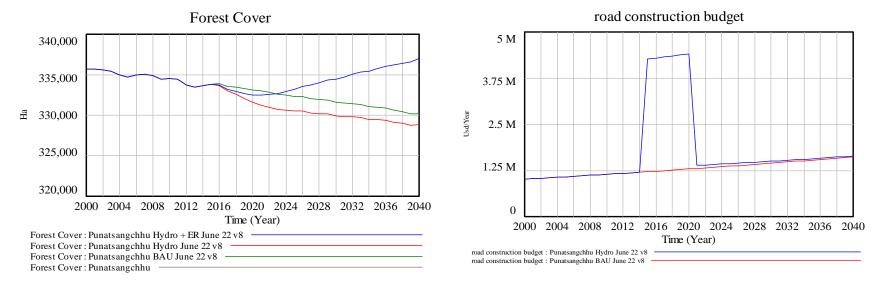
Landlocked Eastern Himalayas: A Fragile Mountainous Landscapes Heavily Forested


TEEB- Bhutan

 Assess changes in ecosystem services provisioning under different hydropower diversification scenarios
 Diversification - Large; Medium; Small etc.

 Recommend instruments, including PES and royalty fee changes to ensure benefits sharing with communities

Integrated Sustainable Water Resources Management


12.4 In order to utilize water resources in a sustainable manner for hydropower generation, it is important to protect water catchment areas by promoting sustainable agricultural/land use practices and nature conservation works. The MoA in collaboration with MoEA shall work out the modalities for integrated sustainable water resources management. A minimum of 1% of royalty energy in cash shall be made available on annual basis to MoA for this purpose.

Ecosystem Services [Results]

- Bio-physical and Valuation Changes projection for 2030 for the scenarios
 - BAU
 - Hydropower Construction
 - Hydropower Construction with Ecosystem Services

□ Value of ES projection for the scenarios [By How Much]

ES	Estimation			Biophysical	Hydro vs		Economic value	Economic valuation (year 2030)		121000000
	InVEST	SD	Benefit transfer	change (2010- 2030): BAU	BAU	ES vs BAU	per unit	Hydro vs BAU	ES vs BAU	Comments
Provision of food		x		1,319 ton	-76	-80	- 739.86 US\$/ton	-\$421,692	-\$424,088	Systemic approach, with endogenous changes to population and land use
					1,159	1,151		\$814,442	\$808,675	Sectoral approach with no change to land use, only yield
Provision of freshwater (quality) - nitrogen		x		0.0410 mg/l	-1.96%	-1.92%	÷	Below health threshold	Below health threshold	Assumes that all the land-related N loadings take place in 20% of the area (concerning the estimation of concentration)
Provision of freshwater (quality) - phosphorus		x		0.0435 mg/l	-3.69%	-3.67%	8	Below health threshold	Below health threshold	Assumes that all the land-related N loadings take place in 20% of the area (concerning the estimation of concentration)
Habitat for species			x	802 ha	-26	590	5,192 US\$/Ha	-\$133,045	\$3,065,470	Economic value per unit obtained from Kubiszewski et al. (2010)
		x		91,633 persons	-3,535	-3,511	576 US\$/person	-\$2,036,106	-\$2,022,201	Assumes that a reduction in habitat quality has a proportional impact on tourism visits (it could also be assumed that expenditure per visit might change)
Regulation of carbon sequestration and storage	x	x		-2,211,105 ton	-81,350	154,884	43 US\$/ton	-\$3,498,050	\$6,660,012	Upper values of carbon coefficients from IPCC Report 2006
	x	x		-123,059 ton	-2,292	52,794	43 US\$/ton	-\$98,556	\$2,270,142	Lower values of carbon coefficients from IPCC Report 2006
Genetic resources			x	802 ha	-26	590	19 \$US/ha/year	-\$487	\$11,218	Economic value per unit for temperate forest obtained from Kubiszewski et al. (2010)
Timber			x	802 ha	-26	590	44 \$US/ha/year	-\$1,128	\$25,979	Economic value per unit for temperate forest obtained from Kubiszewski et al. (2010)
Biological control			x	406 ha	-164	-163	28 \$US/ha/year	-\$4,599	-\$4,566	Economic value per unit for cropland obtained from Kubiszewski et al. (2010)
			х	802 ha	-26	590	9 \$US/ha/year	-\$231	\$5,314	Economic value per unit for temperate forest obtained from Kubiszewski et al. (2010)
Pollination			x	406 ha	-164	-163	19 \$US/ha/year	-\$3,121	-\$3,099	Economic value per unit for cropland obtained from Kubiszewski et al. (2010)
			x	802 ha	-26	590	376 \$US/ha/year	-\$9,635	\$221,999	Economic value per unit for temperate forest obtained from Kubiszewski et al. (2010)

- Land use type practices up-stream
- Institution of PES to up-stream land users
- Recommendations for planned projects

Tashi Delek

This project is funded by the European Union

Paul Herrera, PhD. (ESPOL) Maria Cristina Torres, PhD. (EPN) Study Coordinators

ecuador

CONTEXT

NATIONAL POLICY FOR:

- Change of Productive Matrix
- Change of Energetic
 Matrix

TWO TEEB STUDIES IN PROGRESS

- Ecosystem services in the Guayas River Basin (ESPOL)
- Ecosystem services in the Coca Watershed (EPN)

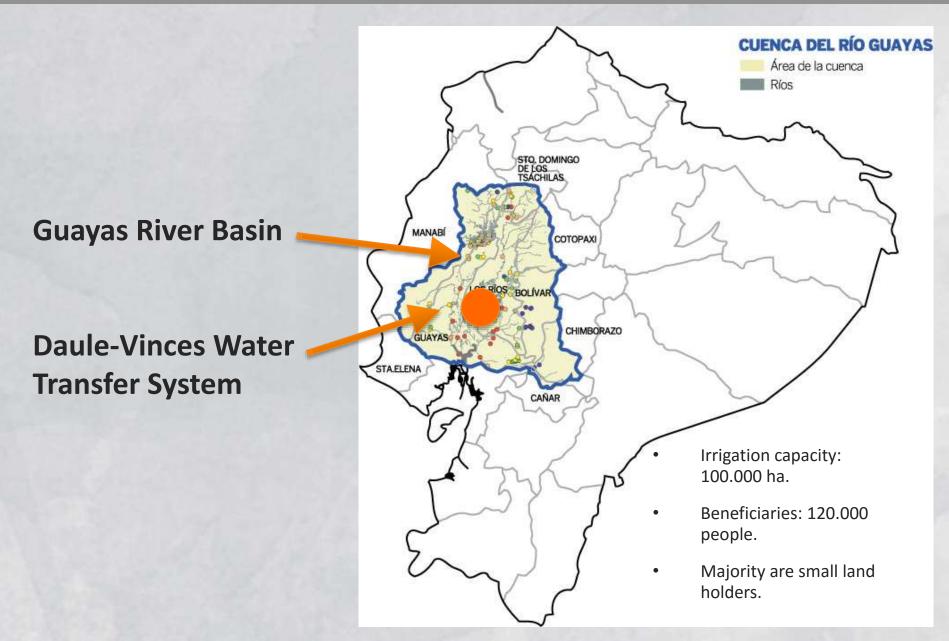
This project is funded by the European Union

Integrating the Value of Ecosystem Services in the Cocoa Value Chain: the case of the Daule-Vinces Irrigation project in the Guayas River Basin, Ecuador.

impulsando la agricultura del conocimiento

Paul Herrera, Ph.D. Study Coordinator

Case identification


FIRST QUESTION MADE TO POLICEMAKERS

What is the most important problem (decision-making) in the Guayas River Basin related to ES?

FIRST IDEAS

- Get all the benefits from the big investments made in the Daule-Vinces (or DAUVIN) Irrigation Project.
- No clear definition about what type of agriculture and what type of development model can be more adequate for the area.

Ecuador - Guayas River Basin

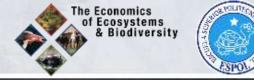
- The Economics of Ecosystems & Biodiversity
- **1. IMPACT ORIENTED** ECOSYSTEM SERVICES VALUATION (POLICY)
- 2. FROM **BIOPHYSICAL** MODELING TO **ECONOMIC VALUATION** MODELING
- 3. RESULTS BASED ON VALUATION SCENARIOS
- 4. MULTI-SECTORIAL PARTICIPATION AND COMMUNICATION

NW

IMPACT ORIENTED ECOSYSTEM SERVICE VALUATION

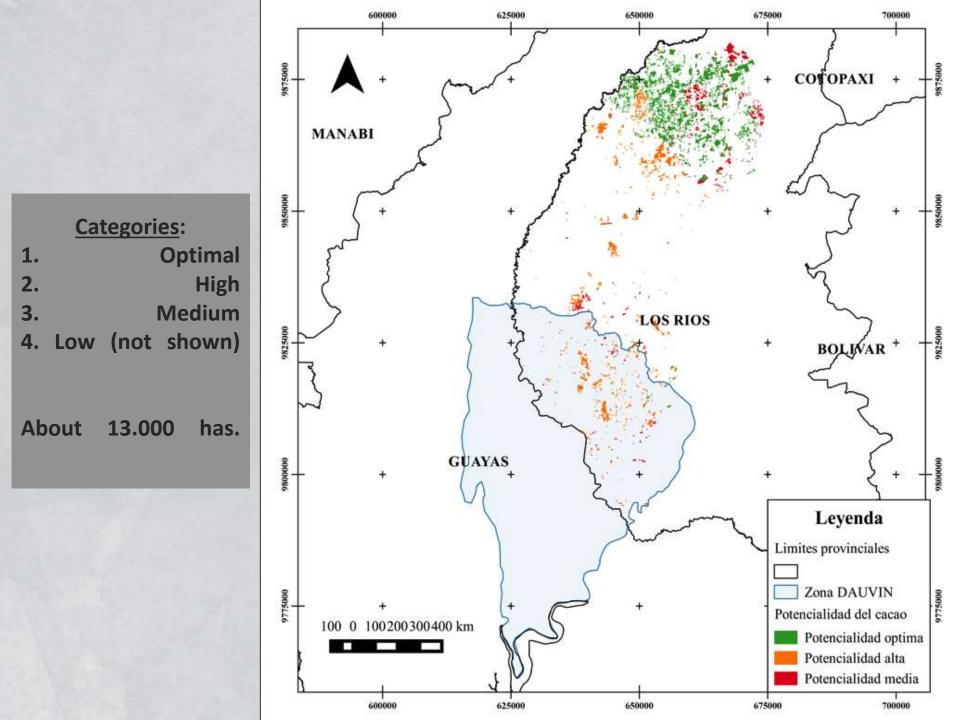
Based on consultations and effective collaboration

FOCUSING THE STUDY


THE ECUADORIAN COCOA

- Ecuador is one of the leading countries in cocoa production and exports.
- About 8% of world cocoa production is "Cacao Fino de Aroma" (Fine Cocoa Aroma).
- 80% of this cocoa is produced en LA.
- Ecuador alone produces about 70% of this cocoa.
- About 90% are small farmer.

- **Ministry of Agriculture** started to **promote Cocoa** production in the area of the Dauvin Irrigation Project.
- International firms (American and European) started to invest in the area (collecting and processing facilities).
- Among **farmers**, there is an **increasing interest in cocoa**, based on its profitability.
- Excellent future perspectives in the international market, but high concern on quality issues associated to presence of heavy metals (Cadmium, Mercury, etc).



N'I

FROM BIOPHYSICAL TO ECONOMIC MODELING

A March Marken Marken Marken Marken Marken Marken

Based on a multidisciplinary approach

The Biophysical-Economic model

CONSEQUENCES

MANANAN

Agricultural Practices in Cocoa production							
- Which affect soils	Ecosystem services affected						
- Which affect water	- Soil fertility	Economic consequences					
- Which affect the	- Water quantity and	- Low crop yield					
plant and the quality	quality - Limited access to						
of the cocoa beans		markets and low					
		prices					
		- Low farmers income					
		- Poor living conditions					

MANDAN

The Economics of Ecosystems & Biodiversity

a VOL(2)

Biophysical model based on...

ANALYSIS OF CERTAIN BIOPHYSICAL KEY PARAMETERS Elements in soil:

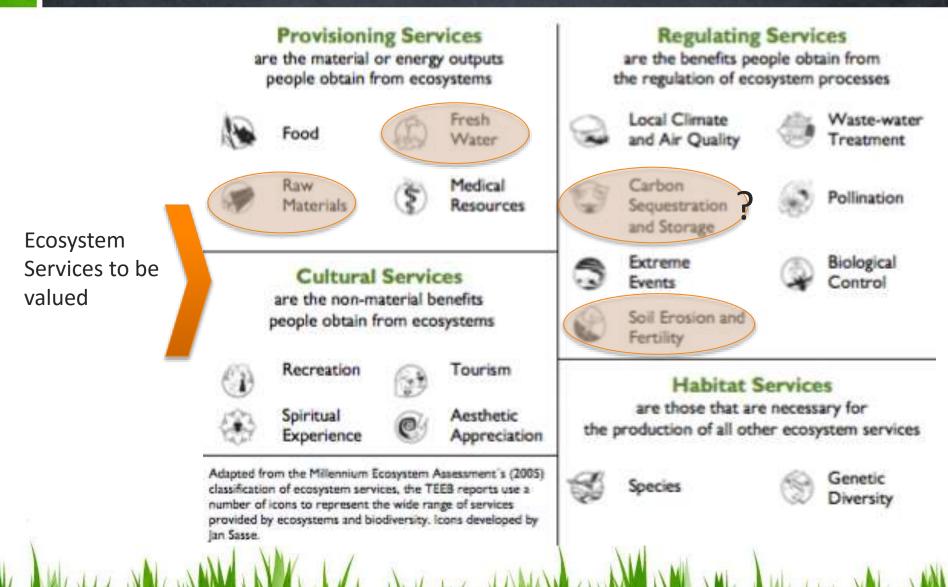
- Nitrogen (total)
- Phosphor
- pH
- Organic matter
- Texture and humidity
- Heavy metals: Cadmium, lead
- Microorganisms in soil and total **Elements in water:**
- Nitrogen (total)
- Phosphor
- pH
- Electric conductivity
- Heavy metals: Cadmium, lead

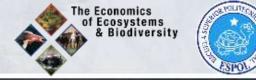
Elements in the cocoa tree leafs:

• Cadmium, lead

150 samples were collected in cocoa farms and analyzed in ESPOL labs. Results are being reviewed and processed.

Economic model based on...


A survey campaign based on a:


- Sampling plan that includes the 150 initial sampled points, plus 350 points inside and outside the Dauvin irrigation project area (Organic producers as control).
- Format included questions about agricultural practices, farm structure and assets, economic aspects of cocoa production, as well as some idiosyncratic variables.

ES under analysis

N

RESULTS BASED ON VALUATION SCENARIOS

Based on data analysis and stakeholders participation

BASED ON THE CONSTRUCTION OF A TYPOLOGY OF AGRICULTURAL PRACTICES IN COCOA PRODUCTION.

Group	Profile	Description	%
1. Small	1	Use of modern and non-modern irrigation techniques; Exclusive use of chemical pesticides and fertilizers. Low yield.	50.25
farmers	2	Non use of irrigation nor chemical pesticides or fertilizers. Low yield	45.24
	1	Big size farmer, with technical use of irrigation. High use of chemical pesticides and fertilizers. Medium to high yield.	2.30
2. Medium- Big size farmers up to 100 has.	2	Medium size farmers, with technical and non-technical use of irrigation. High use of chemical pesticides and fertilizers. Medium yield.	1.23
	3	Medium size farmers, with non-technical or non-use of irrigation and/or chemical pesticides and fertilizers. Low yield.	0.98
A MILLIN S	AL AN	MANY AND A REAL AND	NAL.

Key aspects for definition of Valuation Scenarios

- Not necessarily small farmers are ES friendly as neither medium or big farmers
- The higher the size of the farm the higher the importance of productivity (which may demand more agricultural inputs)
- Trade off between practices that improve productivity but may affect Ecosystem Services
- Differences in capacity to adopt agricultural practices that are ES friendly

VALUATION SCENARIOS

	BAU	Scenario 1	Scenario 2
Increase of production area	Marginal increase	Significant increase	Significant increase
Change in agricultural practices	No change	No change	Practices change
Benefits of Irrigation project (productivity)	No benefits	Benefits (increased productivity)	Benefits (increased productivity)
Improving economics conditions of rural poor	No improvements	Improvements	Improvements
Improving living conditions of rural poor related to ES dependencies	No improvements	No improvements	Improvements
ES provision / health	? (+/-)	? (-)	? (+)

MULTI-SECTORIAL PARTICIPATION AND COMMUNICATION

Based on a defined strategy

QUESTIONS FOR POLICY DESIGN

Which technologies for cultivation, irrigation, crop protection, harvest, etc, should be promoted in the area?

Which practices can help to reduce the impact over the ecosystems?

Which institutional arrangements can help to have a sustainable irrigation system?

What socio-environmental aspects should be considered to reduce conflicts and improve the resilience of the ecosystems in the Dauvin area?

Local collaborations from...

Secretaría Nacional del **Agua**

Farmer's participation

The Economics of Ecosystems & Biodiversity

United Nations Environment Programme

Paúl Herrera, Ph.D. Tlf: (593) 04.2269269 Email & Skype: <u>aherrera@espol.edu.ec</u>

Maria Cristina Torres, PhD. Tlf: (593) 02.29776300 Email: <u>maria.torresg@epn.edu.ec</u> Skyoe: ma.cristorres

OLITÉCNICA ACIÓNAL

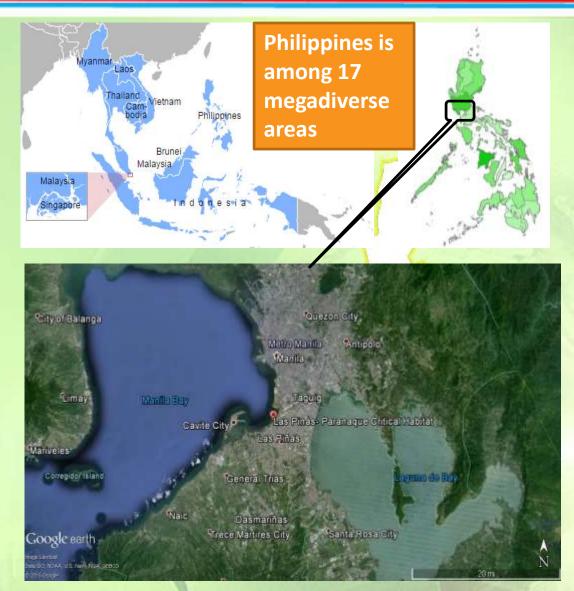
This project is funded

by the European Union

TEEB: The Philippine Country Study

CBD COP 13 Cancun, Mexico December 2016

European Commission

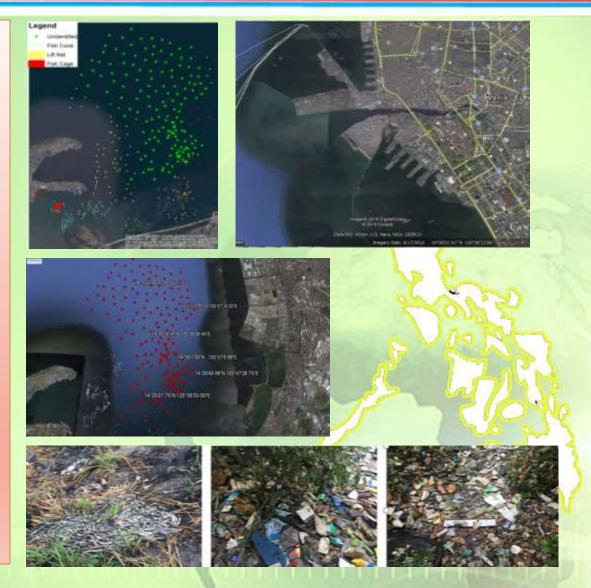

Project Scope

<u>Manila Bay</u>

- 30 % of the country's population (of 100+ M) is in Manila Bay watershed area,
- Contributes as much as 52% of GDP
- Economic value estimated at PhP 8 Billion/year (PEMSEA, 2005) – focused on losses due to decline in water quality
- Supreme Court December 18, 2008 writ of continuing mandamus "to rehabilitate, restore, and conserve the Manila Bay at the earliest possible time?

REECS

European Commission



Why topic was chosen..

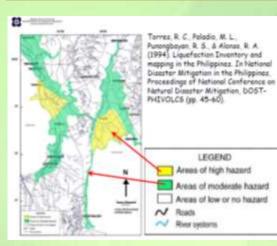
- Coastal ecosystems conversion including reclamation, particularly in the Manila Bay coastlines
- Increasing pollutants causing algal blooms and fish kills
- Rapid loss of ecosystems and biodiversity
 - Rapid expansion of settlements,
 - infrastructure development,
 - coastal developments

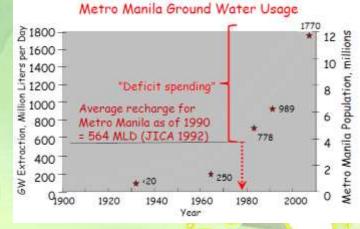
European Commission

REECS

Why the topic was chosen..

•


- National Reclamation Plan (NRP), 102 reclamation projects nationwide;
 - Thirty eight (38) of these reclamation projects encompassing 26,234 hectares, or 70% will


be implemented in

Manila Bay.

- Reclaimed coastal areas are susceptible to liquefaction and enhanced ground-shaking during earthquakes (Torres et al., 1994).
- Metro Manila's coastal areas are sinking as fast as 9 cm/y (Rodolfo et al. 2003, Siringan and Rodolfo 2003, Rodolfo and Siringan 2006)
- Subsidence, liquefaction and seismic ground acceleration are critical hazard factors in near shore reclamations
- subsidence is worsening both floods and high - tide invasions.
- Global warming has raised sea level by about 3 mm/y from 1993 2009

Kelvin Rodolfo, 2014. Commentary: On the geological hazards that threaten existing and proposed reclamations of Manila Bay. Philippine Science Letters Vol. 7 No. 1 2014

Stakeholder Engagements

Training/Workshop on scenario development March 30, 2016, Hotel Jen.

PARTICIPANTS

The Economics of Econystems and Biadiversity (TEEB) in the Philippines WORKSHOP ON SCENARIO BUILDING

Metro Manila Development Authority (MMDA), Department of Public Works and Highways (DPWH), Philippine Reclamation Authority (PRA), Local Government Unit of Paranaque, Biodiversity and Management Bureau (BMB), Environmental Management Bureau (EMB), Ecosystems Research and Development Bureau (ERDB), National Mapping and Resource Information Authority (NAMRIA), Manila Bay Coordinating Office (MBCO) and more

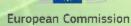
REECS

Workshop on Biophysical Data Assessment June 6, 2016

Dr. Gem Castillo. Resource Valuation Expert Mr. Efraim Roxas, Mr. GIS Expert Cl

Mr. Ben Patrick Soliguin *Climate Modelling Expert* (Representative)

Arne Erik Jensen, Habitats Export


Dr. Jose Ingles, Fisheries Expert

Dr. Ernesto Dela Cruz. D Environmental Engineer

Dr. Marian Delos Angeles, Project Adviser

(left) Dr. Sem Castillo - elucidating the process of scenario analysis; (right) Dr. Morian Delos Angeles and Dr. Sem Castillo - illustrating the concept of Valuation

REECS

Ecosystem Services Identified

Provisioning Services

- 1. Fishes, Invertebrates, other fishery products from open waters
- 2. Seaweeds from open waters
- 3. Wood raw materials from mangroves

Cultural Services

- 1. Recreation services of beach areas
- 2. Ecotourism of mangrove and mudflats
- 3. Aesthetic of the habitats and the bay
- 4. Scientific and educational value of bay ecosystems
- Heritage and cultural services of the Bay

European Commission

REEC

Regulating Services

- Water quality maintenance of open waters
- 2. Habitat for migratory and local birds
- 3. Flood regulation of mangroves
- 4. Storm urge protection by coral reef, seagrasses and mangroves
- Sea Level Rise protection by coastal habitats (coral reef, seagrasses and mangroves)
- 6. Waste dilution and assimilation services of open waters and mudflats
- Carbon sequestration and storage by mangroves
- 8. Sediment retention by mangroves
- 9. Filtering values of mudflats and ponds

2

Data Inputs from Stakeholders

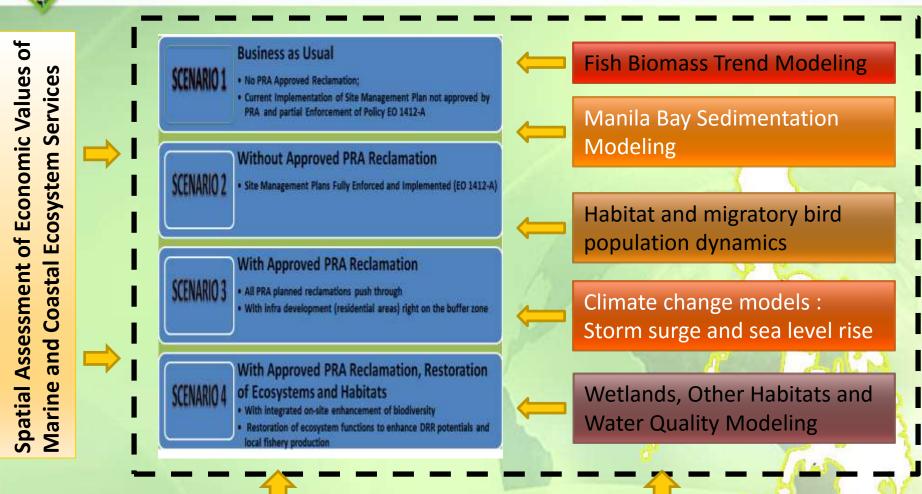
Ecosystems and corresponding data

- Mudflats
- Mangroves
- Open waters
- Fishponds
- Fish pens and fish cages
- Critical Habitat and Ecotourim Area
- Completed, on-going and proposed reclamation
- Ponds
- Lagoons
- Sand and Beach areas
- Coral reefs and seagrasses
- Bathymetry data
- Prior years topographic maps

REECS

Data Sources	Maps	Socio- demographic	Monetary Values	Cost Data	Biophysical Data	Legal Documents	Management and Regulatory Information	Other Information
Department of Environment and Natural Resources - National Capital Region								Manila Bay Project reports thesis, surveys assessments
DENR-Biodiversity Management Bureau								
DENR-Manila Bay Coordinating Office	Manila Bay Atlas			Dikes and Breakwaters	Manila Bay Atlas		Management plan, informal settlers	
Metro Manila Development Authority		Informal Settlers						
Department of Agriculture - Bureau of Fisheries and Aquatic Resources					Fish Biomass Study			
National Mapping and Resources Information Administration	Bathymetry, Land Cover Map, Topographic Map							
Department of Public Works and Highways			Damage data				Flood Management Master Plan	
Laguna Lake Development Authority					Hydrodynamic modeling			
Department of Interior and Local Governments		informal Settlers						
Philippine Reclamation Authority	Sketch maps of existing and proposed reclamation areas						National Reclamation Plan	
Philippine Statistical		Demographic			Fishery			
Authority REECS	Site visits, Google earth digitization	data Focus group discussion	Focus group Discussions, estimates of mangrove carbon	Focus group discussion	production Birds Census, fishers Interviews, Aerial surveys			
Exiting Literatures, Reports, Journals	Earthquakes, subsidence, water supply			Research Reports				Modeling

Compilation of biophysical and monetary values



Transforming these into map layers for spatial assessment of ecosystem extent, condition and supply of ecosystem services

European Commission

Systems Modeling and Scenario Analysis

RISK MODELING: LIQUEFACTION AND LAND SUBSIDENCE

Policy relevance

Integration of ES and biodiversity valuation and accounting in local land use and climate change related action planning

- Inclusion of ES sustainability and biodiversity among indicators of natural capital and national wealth
- Inclusion of ecosystem services impacts in the implementation of the EIA and inform proposed reclamations

European Commission

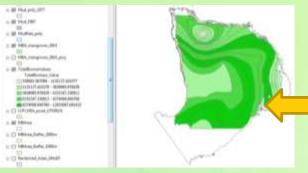
REECS

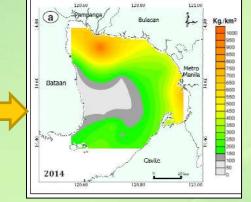
Targeted Policy Processes and Intitutionalization

Improvement of the EIA process

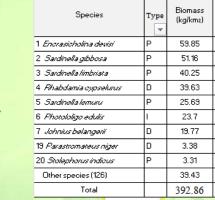
Integration of biodiversity and ecosystem considerations in local land use planning such as estimating its direct and indirect contributions to economic and other human activities

Institutionalizing ecosystem and biodiversity accounting in the Philippine Statistical Authority




Biophysical and Economic Modeling

Manila Bay Fish Trawling Survey Locations


Spatial dist. of fish biomass values per biomass range, kg/km2

Demersal Fish biomass distrib. in Manila Bay

2014 Data.	NH.	Deriversal	KARPHON .	traling to:	incommentations:	COTH-BH
Biomaan hange, kg/km2	Total Biomes, 3014	Securities tail cureties frate	Wetanger's croaker	bevi's anchovy	squid	Species
	100%	10.1%	3,075	13.2%	0.0%	11.75
0-100	28,750	0.004	1,195	8,828	1.423	1,790
100-150	26,500	2.075	1.434	4,342	1.719	3,336
150-200	a0.000	4,635	2,015	8,094	2,413	4,662
200-288	417,38890	4,992	2,000	7,208	2,000	10,039
2940-3001	88,7000	8.722	3.807	3,622	2,238	4,119
300-334	30.800	8.007	1.550	4,652	3,858	8,805
100-400	185,800	3.752	1.852	3,605	3.2549	4,302
#00-450	42,750	4,312	2,351	6,543	2.579	5,000
830-300	-36,500	5,664	3,932	3,005	2,829	4,505
100-550	34,100	3,440	1,716	9,195	3,093	3,993
000-000	17,000	2,788	1,385	4,200	2,000	1,250
thine-troks	24,803	3,311	1,754	3,892	2,200	4,075
050-70H	180, 7507	3.100	1.540	4,603	1,854	8.396
200-250	\$4,250	1,497	712	2,171	960	3,668
750-806	9,800	900	-48.5	3,403	5.79	5,8.24
11/16-0408	2,562	794	542	5,287	-884	14.611
000-068	8.330	10.04	439	3,207	534	982
900-950	2,052	398	1.09	388	. 332	294
ficital	455.300	48,954	34,3970	15,441	23.874	57,956

Total value of fish biomass per biomass range, kg/km2

Rel. abundance estimate of demersal and pelagic fish

Relative

Abundance

Estimate

15.2%

13.0%

10.2%

10.1%

6.5%

6.0%

5.0%

0.9%

0.8%

10.0%

100.0%

					Total	Pelagie	Demental m	wertebrates
Biomass kange. kg/km2	Area. hectares	biomess, kg/km2, max of cange	Yotal Demenal Biomass taxed on mae of range	Biomass. mt/km2	2554 Biomiss Total Based on demersal fish data	51%	42%	-
0-100	19.000	- 59	9,500	6.05	28,750	12,113	3,500	2,138
100-130	19,000	150	28,500	0,13	71,290	30,338	28,500	6,413
150-200	20.000	200	40,000	0.20	100.000	51,000	40.000	9,000
200-250	19,000	250	47,500	0.25	116,750	60,583	47,500	10,668
250-300	\$2,100	300	35,900	0.30	92,250	47,048	36,900	6,363
300-350	1,300	356	93,800	0,35	17,000	39,270	95.800	6,935
210-800	1,200	400	35,800	0.40	92,000	46,928	34,900	8,260
400-450	9,500	450	42,750	0,45	106,875	\$4,508	42,750	9,615
100-900	940	100	0.516	0.90	21,281	10,858	8.516	1,916
900-950	264	996	2,512	0.95	6,280	3,204	2.512	365
Course Status	253 340		450 100		1 202 4 22	ATT 224	485 050	1000 214

Total fish biomass distribution per biomass range, kg/km2

Based on Bendaño AP, FSB Torres Jr., GDV. Lopez, MA Perez and M.D. Santos. 2016. Biomass trends, species composition, distribution and exploitation of dominant fisheries species in Manila Bay using experimental trawl survey. National Fisheries Research and Development Institute Corporate 101 Bldg., Mo. Ignacia Ave. South Triangle, Quezon City 1103 Philippines

